, Volume 33, Issue 4, pp 579–590 | Cite as

Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women

  • Elena M. Yubero-Serrano
  • Nieves Delgado-Casado
  • Javier Delgado-Lista
  • Pablo Perez-Martinez
  • Inmaculada Tasset-Cuevas
  • Monica Santos-Gonzalez
  • Javier Caballero
  • Antonio Garcia-Rios
  • Carmen Marin
  • Francisco M. Gutierrez-Mariscal
  • Francisco Fuentes
  • Jose M. Villalba
  • Isaac Tunez
  • Francisco Perez-Jimenez
  • Jose Lopez-MirandaEmail author


Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. We have investigated whether the quality of dietary fat alters postprandial cellular oxidative stress and whether the supplementation with coenzyme Q10 (CoQ) lowers postprandial oxidative stress in an elderly population. In this randomized crossover study, 20 participants were assigned to receive three isocaloric diets for periods of 4 week each: (1) Mediterranean diet supplemented with CoQ (Med+CoQ diet), (2) Mediterranean diet (Med diet), and (3) saturated fatty acid-rich diet (SFA diet). After a 12-h fast, the volunteers consumed a breakfast with a fat composition similar to that consumed in each of the diets. CoQ, lipid peroxides (LPO), oxidized low-density lipoprotein (oxLDL), protein carbonyl (PC), total nitrite, nitrotyrosine plasma levels, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and ischemic reactive hyperaemia (IRH) were determined. Med diet produced a lower postprandial GPx activity and a lower decrease in total nitrite level compared to the SFA diet. Med and Med+CoQ diets induced a higher postprandial increase in IRH and a lower postprandial LPO, oxLDL, and nitrotyrosine plasma levels than the SFA diet. Moreover, the Med+CoQ diet produced a lower postprandial decrease in total nitrite and a greater decrease in PC levels compared to the other two diets and lower SOD, CAT, and GPx activities than the SFA diet.

In conclusion, Med diet reduces postprandial oxidative stress by reducing processes of cellular oxidation and increases the action of the antioxidant system in elderly persons and the administration of CoQ further improves this redox balance.


Aging Mediterranean diet Coenzyme Q10 Oxidative stress Postprandial phase 





Body mass index




Coenzyme Q10


Gluthatione peroxidase


Hydrogen peroxide


HDL cholesterol


Ischemic reactive hyperaemia


LDL cholesterol


Lipid peroxidation products

Med diet

Mediterranean diet

Med+CoQ diet

Mediterranean supplemented with CoQ


Monounsaturated fatty acid


Nitric oxide


LDL oxidized


Protein carbonyl


Polyunsaturated fatty acid


Reactive oxygen species


Reactive nitrogen species


Saturated fatty acid-rich diet


Superoxide dismutase


Total cholesterol





Supported in part by research grants from the Ministerio de Ciencia e Innovación (AGL 2004-07907, AGL2006-01979, AGL2009-12270 to JL-M), (CB06/03/0047-CIBER Fisiopatologia de la Obesidad y Nutrition is an initiative of ISCIII to FP-J), Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P06-CTS-01425 to JL-M); Consejería de Salud, Junta de Andalucía (06/128, 07/43, PI0193/2009 to JL-M, 06/129 to FP-J), and Kaneka Corporation (Japan) by the production of CoQ and placebo capsules.

Supplementary material

11357_2010_9199_MOESM1_ESM.pdf (90 kb)
Supporting Material (PDF 90 kb)


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  2. Arsova-Sarafinovska Z, Eken A, Matevska N, Erdem O et al (2009) Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin Biochem 42(12):1228–1235PubMedCrossRefGoogle Scholar
  3. Bañuls C, Martínez-Triguero ML, López-Ruiz A, Morillas C, Lacomba R, Víctor VM, Rocha M, Hernández-Mijares A (2010) Evaluation of cardiovascular risk and oxidative stress parameters in hypercholesterolemic subjects on a standard healthy diet including low-fat milk enriched with plant sterols. J Nutr Biochem 21(9):881–886PubMedCrossRefGoogle Scholar
  4. Bertuglia S (2008) Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage. Am J Physiol Heart Circ Physiol 294:1914–1922CrossRefGoogle Scholar
  5. Bouhafs RK, Samuelson A, Jarstrand C (2003) Lipid peroxidation of lung surfactant due to reactive oxygen species released from phagocytes stimulated by bacteria from children with cystic fibrosis. Free Radic Res 37:909–917PubMedCrossRefGoogle Scholar
  6. Covas MI (2007) Olive oil and the cardiovascular system. Pharmacol Res 55(3):175–186PubMedCrossRefGoogle Scholar
  7. Delgado-Lista J, Garcia-Rios A, Perez-Martinez P et al (2010) Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function. Clin Nutr. doi: 10.1016/j.clnu.2010.08.006 PubMedGoogle Scholar
  8. Erdelmeier I, Gerard-Monnier D, Yahan JC, Chaudière J (1998) Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1184–1194PubMedCrossRefGoogle Scholar
  9. Fitó M, Guxens M, Corella D et al (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167(11):1195–1203PubMedCrossRefGoogle Scholar
  10. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121PubMedCrossRefGoogle Scholar
  11. Fuentes F, Lopez-Miranda J, Perez-Martinez P et al (2008) Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men. Br J Nutr 100(1):159–165PubMedCrossRefGoogle Scholar
  12. Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD (2002) Coenzyme Q(10) improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr 56:1137–1142PubMedCrossRefGoogle Scholar
  13. Holvoet P, Lee DH, Steffes M, Gross M, Jr Jacobs Dr (2008) Association between circulating oxidized low-density lipoprotein and incident of the metabolic syndrome. JAMA 299(19):2287–2293PubMedCrossRefGoogle Scholar
  14. Human Nutrition Information Service, Department of Agriculture (1987) Composition of foods. US Government Printing Office, Washington, DCGoogle Scholar
  15. Imada I, Sato EF, Kira Y, Inoue M (2008) Effect of CoQ homologues on reactive oxygen generation by mitochondria. Biofactors 32(1–4):41–48PubMedCrossRefGoogle Scholar
  16. Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26(5):526–531PubMedCrossRefGoogle Scholar
  17. Karatzi K, Papamichael C, Karatzis E, Papaioannou TG, Voidonikola PT, Vamvakou GD, Lekakis J, Zampelas A (2008) Postprandial improvement of endothelial function by red wine and olive oil antioxidants: a synergistic effect of components of the Mediterranean diet. J Am Coll Nutr 27(4):448–453PubMedGoogle Scholar
  18. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedCrossRefGoogle Scholar
  19. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603PubMedCrossRefGoogle Scholar
  20. Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, Acudiere J (1993) Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 214(2):442–451PubMedCrossRefGoogle Scholar
  21. Perez-Martinez P, Garcia-Quintana JM, Yubero-Serrano EM, Tasset-Cuevas I, Tunez I, Garcia-Rios A, Delgado-Lista J, Marin C, Perez-Jimenez F, Roche HM, Lopez-Miranda J (2010) Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study. Clin Sci 119(6):251–261PubMedCrossRefGoogle Scholar
  22. Quiles JL, Ochoa JJ, Battino M, Gutierrez-Rios P, Nepomuceno EA, Frías ML, Huertas JR, Mataix J (2005) Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage. Biofactors 25(1–4):73–86PubMedCrossRefGoogle Scholar
  23. Quinzii CM, López LC, Von-Moltke J, Naini A, Krishna S, Schuelke M, Salviati L, Navas P, DiMauro S, Hirano M (2008) Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J 22(6):1874–1885PubMedCrossRefGoogle Scholar
  24. Razquin C, Martinez JA, Martinez-Gonzalez MA, Mitjavila MT, Estruch R, Marti A (2009) A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr 63(12):1387–1393PubMedCrossRefGoogle Scholar
  25. Ricard-Jané D LM, Lopez-Tejero X (2002) Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantifications by the Griess method. Nitric Oxide 6:178–185CrossRefGoogle Scholar
  26. Ruano J, Lopez-Miranda J, Fuentes F, Moreno JA, Bellido C, Perez-Martínez P, Lozano A, Gomenz P, Jimenez Y, Perez-Jimenez F (2005) Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J Am Coll Cardiol 46:1864–1868PubMedCrossRefGoogle Scholar
  27. Sakano N, Takahashi N, Wang DH, Sauriasari R, Takemoto K, Kanbara S, Sato Y, Takigawa T, Takaki J, Ogino K (2009) Plasma 3-nitrotyrosine, urinary 8-isoprostane and 8-OHdG among healthy Japanese people. Free Radic Res 43:183–192PubMedCrossRefGoogle Scholar
  28. Santos-González M, Gómez-Díaz C, Navas P, Villalba JM (2007) Modifications of plasma proteome in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol 42(8):798–806PubMedCrossRefGoogle Scholar
  29. Stachowska E, Wesołowska T, Olszewska M, Safranow K, Millo B, Domański L, Jakubowska K, Ciechanowski K, Chlubek D (2005) Elements of Mediterranean diet improve oxidative status in blood of kidney graft recipients. Br J Nutr 93(3):345–352PubMedCrossRefGoogle Scholar
  30. Stanhope KL, Schwarz J, Keim NL, Griffen SC, Bremer AA, Graham JL et al (2009) Consuming fructose sweeted, not glucose sweeted, veverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119(5):1322–1334PubMedCrossRefGoogle Scholar
  31. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348(26):2599–2608PubMedCrossRefGoogle Scholar
  32. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660(1–2):171–199PubMedGoogle Scholar
  33. Varela G (1980) Tablas de composición de alimentos. (Food composition tables). Instituto de Nutrición CSIC, MadridGoogle Scholar
  34. Visioli F, Galli C (2001) The role of antioxidants in the Mediterranean diet. Lipids 36(suppl):S49–S52PubMedCrossRefGoogle Scholar
  35. Wadsworth TL, Bishop JA, Pappu AS, Woltjer RL, Quinn JF (2008) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer's disease. J Alzheimers Dis 14(2):225–234PubMedGoogle Scholar
  36. Zhu H, Zhang L, Amin AR, Li Y (2008) Coordinated upregulation of a series of endogenous antioxidants and phase 2 enzymes as a novel strategy for protectig renal tubular cells from oxidative and electrophilic stress. Exp Biol Med (Maywood) 233(6):753–765CrossRefGoogle Scholar

Copyright information

© American Aging Association 2010

Authors and Affiliations

  • Elena M. Yubero-Serrano
    • 1
  • Nieves Delgado-Casado
    • 1
  • Javier Delgado-Lista
    • 1
  • Pablo Perez-Martinez
    • 1
  • Inmaculada Tasset-Cuevas
    • 2
  • Monica Santos-Gonzalez
    • 3
  • Javier Caballero
    • 4
  • Antonio Garcia-Rios
    • 1
  • Carmen Marin
    • 1
  • Francisco M. Gutierrez-Mariscal
    • 1
  • Francisco Fuentes
    • 1
  • Jose M. Villalba
    • 3
  • Isaac Tunez
    • 2
  • Francisco Perez-Jimenez
    • 1
  • Jose Lopez-Miranda
    • 1
    • 5
    Email author
  1. 1.Lipids and Atherosclerosis UnitIMIBIC/Reina Sofia University Hospital/University of Cordoba and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos IIICórdobaSpain
  2. 2.Department of Biochemistry and Molecular Biology (IMIBIC), Faculty of MedicineUniversity of CordobaCórdobaSpain
  3. 3.Department of Cell Biology, Physiology and ImmunologyUniversity of CordobaCórdobaSpain
  4. 4.Clinical Analysis ServiceReina Sofia University HospitalCórdobaSpain
  5. 5.Lipids and Atherosclerosis UnitReina Sofia University HospitalCórdobaSpain

Personalised recommendations