, Volume 32, Issue 3, pp 271–282 | Cite as

Prostaglandin D2 DP1 receptor is beneficial in ischemic stroke and in acute exicitotoxicity in young and old mice

  • Abdullah Shafique Ahmad
  • Muzamil Ahmad
  • Takayuki Maruyama
  • Shuh Narumiya
  • Sylvain Doré


The cardiovascular complications reported to be associated with cyclooxygenase inhibitor use have shifted our focus toward prostaglandins and their respective receptors. Prostaglandin D2 and its DP1 receptor have been implicated in various normal and pathologic conditions, but their role in stroke is still poorly defined. Here, we tested whether DP1 deletion aggravates N-methyl-d-aspartic acid (NMDA)-induced acute toxicity and whether DP1 pharmacologic activation protects mice from acute excitotoxicity and transient cerebral ischemia. Moreover, since the elderly are more vulnerable to stroke-related damage than are younger patients, we tested the susceptibility of aged DP1 knockout (DP1−/−) mice to brain damage. We found that intrastriatal injection of 15 nmol NMDA caused significantly larger lesion volumes (27.2 ± 6.4%) in young adult DP1−/− mice than in their wild-type counterparts. Additionally, intracerebroventricular pretreatment of wild-type mice with 10, 25, and 50 nmol of the DP1-selective agonist BW245C significantly attenuated the NMDA-induced lesion size by 19.5 ± 5.0%, 39.6 ± 7.7%, and 28.9 ± 7.0%, respectively. The lowest tested dose of BW245C also was able to reduce middle cerebral artery occlusion-induced brain infarction size significantly (21.0 ± 5.7%). Interestingly, the aggravated NMDA-induced brain damage was persistent in older DP1−/− mice as well. We conclude that the DP1 receptor plays an important role in attenuating brain damage and that selective targeting of this receptor could be considered as an adjunct therapeutic tool to minimize stroke damage.


BW245C G-protein-coupled receptors Mouse Neurodegeneration Neuroprotection NMDA Prostaglandins 



This work was supported in part by grants from the National Institutes of Health NS046400 and AG022971 (SD) and the American Heart Association 0830172N (ASA). We thank Claire Levine for assistance in the preparation of the manuscript and all members of the Doré lab team for assistance in this project.

Conflict of interest

None of the authors have any conflict of interest associated with this work.


  1. Abdel-Halim MS, Hamberg M, Sjoquist B, Anggard E (1977) Identification of prostaglandin D2 as a major prostaglandin in homogenates of rat brain. Prostaglandins 14:633–643. doi: 10.1016/0090-6980(77)90190-3 CrossRefPubMedGoogle Scholar
  2. Abramovitz M, Adam M, Boie Y, Carriere M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta 1483:285–293. doi: 10.1016/S1388-1981(99)00164-X PubMedGoogle Scholar
  3. Ahmad AS, Saleem S, Ahmad M, Doré S (2006a) Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 89:265–270. doi: 10.1093/toxsci/kfj022 CrossRefPubMedGoogle Scholar
  4. Ahmad AS, Zhuang H, Echeverria V, Doré S (2006b) Stimulation of prostaglandin EP2 receptors prevents NMDA-induced excitotoxicity. J Neurotrauma 23:1895–1903. doi: 10.1089/neu.2006.23.1895 CrossRefPubMedGoogle Scholar
  5. Ahmad M, Saleem S, Zhuang H, Ahmad AS, Echeverria V, Sapirstein A, Doré S (2006c) 1-HydroxyPGE1 reduces infarction volume in mouse transient cerebral ischemia. Eur J Neurosci 23:35–42. doi: 10.1111/j.1460-9568.2005.04540.x CrossRefPubMedGoogle Scholar
  6. Alving K, Matran R, Lundberg JM (1991) The possible role of prostaglandin D2 in the long-lasting airways vasodilatation induced by allergen in the sensitized pig. Acta Physiol Scand 143:93–103. doi: 10.1111/j.1748-1716.1991.tb09204.x CrossRefPubMedGoogle Scholar
  7. Angeli V, Staumont D, Charbonnier AS, Hammad H, Gosset P, Pichavant M, Lambrecht BN, Capron M, Dombrowicz D, Trottein F (2004) Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. J Immunol 172:3822–3829PubMedGoogle Scholar
  8. Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem Res 14:555–562CrossRefPubMedGoogle Scholar
  9. Bohm E, Sturm GJ, Weiglhofer I, Sandig H, Shichijo M, McNamee A, Pease JE, Kollroser M, Peskar BA, Heinemann A (2004) 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. J Biol Chem 279:7663–7670. doi: 10.1074/jbc.M310270200 CrossRefPubMedGoogle Scholar
  10. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A et al (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102. doi: 10.1056/NEJMc066260 CrossRefPubMedGoogle Scholar
  11. Brus R, Herman ZS, Szklinik R (1980) Central effects of prostaglandin D2. Pol J Pharmacol Pharm 32:681–684PubMedGoogle Scholar
  12. Campbell IG, Feinberg I (1996) Noncompetitive NMDA channel blockade during waking intensely stimulates NREM delta. J Pharmacol Exp Ther 276:737–742PubMedGoogle Scholar
  13. Casteleijn E, Kuiper J, Van Rooij HC, Kamps JA, Koster JF, Van Berkel TJ (1988) Prostaglandin D2 mediates the stimulation of glycogenolysis in the liver by phorbol ester. Biochem J 250:77–80PubMedGoogle Scholar
  14. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14. doi: 10.1097/00004647-200101000-00002 CrossRefPubMedGoogle Scholar
  15. Cheng K, Wu TJ, Wu KK, Sturino C, Metters K, Gottesdiener K, Wright SD, Wang Z, O'Neill G, Lai E et al (2006) Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A 103:6682–6687. doi: 10.1073/pnas.0601574103 CrossRefPubMedGoogle Scholar
  16. Cohen SA, Muller WE (1992) Age-related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Res 584:174–180CrossRefPubMedGoogle Scholar
  17. Darius H, Michael-Hepp J, Thierauch KH, Fisch A (1994) Inhibition of human platelets and polymorphonuclear neutrophils by the potent and metabolically stable prostaglandin D2 analog ZK 118.182. Eur J Pharmacol 258:207–213CrossRefPubMedGoogle Scholar
  18. Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR (2007) Changes in the structural complexity of the aged brain. Aging Cell 6:275–284CrossRefPubMedGoogle Scholar
  19. Echeverria V, Clerman A, Doré S (2005) Stimulation of PGE2 receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following β-amyloid exposure. Eur J Neurosci 22:2199–2206. doi: 10.1111/j.1460-9568.2005.04427.x CrossRefPubMedGoogle Scholar
  20. Eguchi N, Minami T, Shirafuji N, Kanaoka Y, Tanaka T, Nagata A, Yoshida N, Urade Y, Ito S, Hayaishi O (1999) Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci U S A 96:726–730CrossRefPubMedGoogle Scholar
  21. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, Planas A, Rothwell N, Schwaninger M, Schwab ME et al (2008) Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis 25:268–278. doi: 10.1159/000118039 CrossRefPubMedGoogle Scholar
  22. Gelir E, Arslan SO, Sayan H, Pinar L (2005) Effect of rapid-eye-movement sleep deprivation on rat hypothalamic prostaglandins. Prostaglandins Leukot Essent Fatty Acids 73:391–396. doi: 10.1016/j.plefa.2005.05.021 CrossRefPubMedGoogle Scholar
  23. Giles H, Leff P, Bolofo ML, Kelly MG, Robertson AD (1989) The classification of prostaglandin DP-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br J Pharmacol 96:291–300PubMedGoogle Scholar
  24. Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, Shoor S, Ray WA (2005) Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 365:475–481. doi: 10.1016/S0140-6736(05)17864-7 PubMedGoogle Scholar
  25. Hamid-Bloomfield S, Whittle BJ (1989) Antagonism of PGD2 vasodepressor responses in the rat in vivo by the novel, selective antagonist, BW A868C. Br J Pharmacol 96:307–312PubMedGoogle Scholar
  26. Hammad H, de Heer HJ, Soullie T, Hoogsteden HC, Trottein F, Lambrecht BN (2003) Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol 171:3936–3940PubMedGoogle Scholar
  27. Hartikka J, Staufenbiel M, Lubbert H (1992) Cyclic AMP, but not basic FGF, increases the in vitro survival of mesencephalic dopaminergic neurons and protects them from MPP(+)-induced degeneration. J Neurosci Res 32:190–201CrossRefPubMedGoogle Scholar
  28. Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166. doi: 10.1016/j.pharmthera.2004.06.003 CrossRefPubMedGoogle Scholar
  29. Hayaishi O (2002) Molecular genetic studies on sleep–wake regulation, with special emphasis on the prostaglandin D2 system. J Appl Physiol 92:863–868. doi: 10.1152/japplphysiol.00766.2001 PubMedGoogle Scholar
  30. Hayaishi O, Urade Y (2002) Prostaglandin D2 in sleep–wake regulation: recent progress and perspectives. Neuroscientist 8:12–15. doi: 10.1177/107385840200800105 CrossRefPubMedGoogle Scholar
  31. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S et al (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261CrossRefPubMedGoogle Scholar
  32. Ientile R, De Sarro A, Rotiroti D, De Sarro GB, Nistico G (1983) Stimulation of rat caudate nucleus adenylate cyclase activity by BW 245 C, a prostaglandin analogue with prostacyclin-like activity. J Pharm Pharmacol 35:62–64PubMedGoogle Scholar
  33. Ito S, Narumiya S, Hayaishi O (1989) Prostaglandin D2: a biochemical perspective. Prostaglandins Leukot Essent Fatty Acids 37:219–234CrossRefPubMedGoogle Scholar
  34. Kandasamy SB, Hunt WA (1990) Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats. Radiat Res 121:84–90CrossRefPubMedGoogle Scholar
  35. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 122:217–224. doi: 10.1038/sj.bjp. 0701367 CrossRefPubMedGoogle Scholar
  36. Koch KA, Wessale JL, Moreland R, Reinhart GA, Cox BF (2005) Effects of BW245C, a prostaglandin DP receptor agonist, on systemic and regional haemodynamics in the anaesthetized rat. Clin Exp Pharmacol Physiol 32:931–935. doi: 10.1111/j.1440-1681.2005.04287.x CrossRefPubMedGoogle Scholar
  37. Liang X, Wu L, Hand T, Andreasson K (2005) Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 92:477–486. doi: 10.1111/j.1471-4159.2004.02870.x CrossRefPubMedGoogle Scholar
  38. Magnusson KR, Cotman CW (1993) Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 14:197–206CrossRefPubMedGoogle Scholar
  39. Matsugi T, Kageyama M, Nishimura K, Giles H, Shirasawa E (1995) Selective prostaglandin D2 receptor stimulation elicits ocular hypotensive effects in rabbits and cats. Eur J Pharmacol 275:245–250. doi: 10.1016/0014-2999(94)00788-9 CrossRefPubMedGoogle Scholar
  40. Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y et al (2000) Prostaglandin D2 as a mediator of allergic asthma. Science 287:2013–2017. doi: 10.1126/science.287.5460.2013 CrossRefPubMedGoogle Scholar
  41. Mattson MP, Guthrie PB, Kater SB (1988) Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci Res 21:447–464CrossRefPubMedGoogle Scholar
  42. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24:257–268. doi: 10.1523/JNEUROSCI.4485-03.2004 CrossRefPubMedGoogle Scholar
  43. Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T et al (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 98:11674–11679. doi: 10.1073/pnas.201398898 CrossRefPubMedGoogle Scholar
  44. Moore LE, Traystman RJ (1994) Role of oxygen free radicals and lipid peroxidation in cerebral reperfusion injury. In: Bosnjak ZJ, August JT (eds) Adv Pharmacol. Academic, San Diego, pp 565–576Google Scholar
  45. Narumiya S, FitzGerald GA (2001) Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 108:25–30PubMedGoogle Scholar
  46. Narumiya S, Toda N (1985) Different responsiveness of prostaglandin D2-sensitive systems to prostaglandin D2 and its analogues. Br J Pharmacol 85:367–375PubMedGoogle Scholar
  47. Narumiya S, Ogorochi T, Nakao K, Hayaishi O (1982) Prostaglandin D2 in rat brain, spinal cord and pituitary: basal level and regional distribution. Life Sci 31:2093–2103CrossRefPubMedGoogle Scholar
  48. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226PubMedGoogle Scholar
  49. Obal F Jr, Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8:d520–d550CrossRefPubMedGoogle Scholar
  50. Ogorochi T, Narumiya S, Mizuno N, Yamashita K, Miyazaki H, Hayaishi O (1984) Regional distribution of prostaglandins D2, E2, and F2 alpha and related enzymes in postmortem human brain. J Neurochem 43:71–82CrossRefPubMedGoogle Scholar
  51. Peterson C, Cotman CW (1989) Strain-dependent decrease in glutamate binding to the N-methyl-d-aspartic acid receptor during aging. Neurosci Lett 104:309–313CrossRefPubMedGoogle Scholar
  52. Rangachari P, Betti P, Prior E, Ln R (1995) Effects of a selective DP receptor agonist (BW 245C) and antagonist (BW A868C) on the canine colonic epithelium: an argument for a different DP receptor? J Pharmacol Exp Ther 275:611–617PubMedGoogle Scholar
  53. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B et al (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146. doi: 10.1161/CIRCULATIONAHA.107.187998 CrossRefPubMedGoogle Scholar
  54. Saleem S, Zhuang H, de Brum-Fernandes AJ, Maruyama T, Narumiya S, Doré S (2007) PGD2 DP1 receptor protects brain from ischemia–reperfusion injury. Eur J Neurosci 26:73–78. doi: 10.1111/j.1460-9568.2007.05627.x CrossRefPubMedGoogle Scholar
  55. Saleem S, Shah ZA, Urade Y, Doré S (2009) Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 160:248–254. doi: 10.1016/j.neuroscience.2009.02.039 CrossRefPubMedGoogle Scholar
  56. Sandig H, Andrew D, Barnes AA, Sabroe I, Pease J (2006) 9α, 11β-PGF2 and its stereoisomer PGF2α are novel agonists of the chemoattractant receptor, CRTH2. FEBS Lett 580:373–379. doi: 10.1016/j.febslet.2005.11.052 CrossRefPubMedGoogle Scholar
  57. Saransaari P, Oja SS (1995) Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech Ageing Dev 81:61–71CrossRefPubMedGoogle Scholar
  58. Sawyer N, Cauchon E, Chateauneuf A, Cruz RPG, Nicholson DW, Metters KM, O'Neill GP, Gervais FG (2002) Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br J Pharmacol 137:1163–1172. doi: 10.1038/sj.bjp. 0704973 CrossRefPubMedGoogle Scholar
  59. Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29CrossRefPubMedGoogle Scholar
  60. Shirahase H, Kanda M, Nakamura S, Tarumi T, Uehara Y, Ichikawa A (2000) Inhibitory effects of PGD2, PGJ2 and 15-deoxy-Δ12, 14-PGJ2 on iNOS induction in rat mesenteric artery. Life Sci 66:2173–2182. doi: 10.1016/S0024-3205(00)00544-0 CrossRefPubMedGoogle Scholar
  61. Siren AL (1982) Central cardiovascular and thermal effects of prostaglandin D2 in rats. Prostaglandins Leukot Med 8:349–359CrossRefPubMedGoogle Scholar
  62. Sklair-Tavron L, Segal M (1993) Neurotrophic effects of cAMP generating systems on central noradrenergic neurons. Brain Res 614:257–269. doi: 10.1016/0006-8993(93)91043-R CrossRefPubMedGoogle Scholar
  63. Spik I, Brenuchon C, Angeli V, Staumont D, Fleury S, Capron M, Trottein F, Dombrowicz D (2005) Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 174:3703–3708PubMedGoogle Scholar
  64. Sturzebecher S, Nieuweboer B, Matthes S, Schillinger E (1989) Effects of PGD2, PGE1, and PGI2-analogues on PGDF-release and aggregation of human gel filtered platelets. Prog Clin Biol Res 301:365–369PubMedGoogle Scholar
  65. Toyomoto M, Ohta M, Okumura K, Yano H, Matsumoto K, Inoue S, Hayashi K, Ikeda K (2004) Prostaglandins are powerful inducers of NGF and BDNF production in mouse astrocyte cultures. FEBS Lett 562:211–215. doi: 10.1016/S0014-5793(04)00246-7 CrossRefPubMedGoogle Scholar
  66. Urade Y, Hayaishi O (1999) Prostaglandin D2 and sleep regulation. Biochim Biophys Acta 1436:606–615. doi: 10.1016/S0005-2760(98)00163-5 PubMedGoogle Scholar
  67. Walch L, Labat C, Gascard JP, de Montpreville V, Brink C, Norel X (1999) Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol 126:859–866. doi: 10.1038/sj.bjp. 0702393 CrossRefPubMedGoogle Scholar
  68. Wenk GL, Walker LC, Price DL, Cork LC (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 12:93–98CrossRefPubMedGoogle Scholar
  69. Whittle BJ, Moncada S, Mullane K, Vane JR (1983) Platelet and cardiovascular activity of the hydantoin BW245C, a potent prostaglandin analogue. Prostaglandins 25:205–223CrossRefPubMedGoogle Scholar
  70. Wright DH, Metters KM, Abramovitz M, Ford-Hutchinson AW (1998) Characterization of the recombinant human prostanoid DP receptor and identification of L-644, 698, a novel selective DP agonist. Br J Pharmacol 123:1317–1324. doi: 10.1038/sj.bjp. 0701708 CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2010

Authors and Affiliations

  • Abdullah Shafique Ahmad
    • 1
  • Muzamil Ahmad
    • 1
  • Takayuki Maruyama
    • 2
  • Shuh Narumiya
    • 3
  • Sylvain Doré
    • 1
    • 4
  1. 1.Department of Anesthesiology/Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Pharmacological Research LaboratoriesOno Pharmaceutical Co. Ltd.OsakaJapan
  3. 3.Department of PharmacologyKyoto University Faculty of MedicineKyotoJapan
  4. 4.Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations