AGE

, Volume 31, Issue 4, pp 353–363 | Cite as

Cellular senescence: unravelling complexity

  • João F. Passos
  • Cedric Simillion
  • Jennifer Hallinan
  • Anil Wipat
  • Thomas von Zglinicki
Article

Abstract

Cellular senescence might be a tumour suppressing mechanism as well as a contributor to age-related loss of tissue function. It has been characterised classically as the result of the loss of DNA sequences called telomeres at the end of chromosomes. However, recent studies have revealed that senescence is in fact an intricate process, involving the sequential activation of multiple cellular processes, which have proven necessary for the establishment and maintenance of the phenotype. Here, we review some of these processes, namely, the role of mitochondrial function and reactive oxygen species, senescence-associated secreted proteins and chromatin remodelling. Finally, we illustrate the use of systems biology to address the mechanistic, functional and biochemical complexity of senescence.

Keywords

Senescence Oxidative stress Mitochondria Secretory phenotype Systems biology Interactomes 

Notes

Acknowledgement

Work leading to this paper was supported by BBSRC (CISBAN) and Research into Ageing UK.

References

  1. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d'Adda di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018CrossRefPubMedGoogle Scholar
  2. Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ (1999) Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 180:114–122CrossRefPubMedGoogle Scholar
  3. Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33:203–207CrossRefPubMedGoogle Scholar
  4. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495Google Scholar
  5. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779CrossRefPubMedGoogle Scholar
  6. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976CrossRefPubMedGoogle Scholar
  7. Blackburn EH, Chan S, Chang J, Fulton TB, Krauskopf A, McEachern M, Prescott J, Roy J, Smith C, Wang H (2000) Molecular manifestations and molecular determinants of telomere capping. Cold Spring Harbor Symp Quant Biol 65:253–263CrossRefPubMedGoogle Scholar
  8. Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34CrossRefPubMedGoogle Scholar
  9. Bond JA, Wyllie FS, Wynford-Thomas D (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9:1885–1889PubMedGoogle Scholar
  10. Breitkreutz B, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner D, Bähler J, Wood V, Dolinski K, Tyers M (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res 36:D637–D640CrossRefPubMedGoogle Scholar
  11. Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740CrossRefPubMedGoogle Scholar
  12. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105CrossRefPubMedGoogle Scholar
  13. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez P-Y, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:e301CrossRefGoogle Scholar
  14. Cristofalo VJ (2005) SA [beta] Gal staining: biomarker or delusion. Exp Gerontol 40:836–838CrossRefPubMedGoogle Scholar
  15. Csermely P, Soti C (2006) Cellular networks and the aging process. Arch Physiol Biochem 112:60–64CrossRefPubMedGoogle Scholar
  16. Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J Cell Sci 118:743–758CrossRefPubMedGoogle Scholar
  17. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110CrossRefPubMedGoogle Scholar
  18. Diella F, Gould CM, Chica C, Via A, Gibson TJ (2008) Phospho.Elm: a database of phosphorylation sites—update 2008. Nucleic Acids Res 36:D240–D244CrossRefPubMedGoogle Scholar
  19. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367CrossRefPubMedGoogle Scholar
  20. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198CrossRefPubMedGoogle Scholar
  21. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MaA (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22:654–667CrossRefPubMedGoogle Scholar
  22. Forsyth NR, Evans AP, Shay JW, Wright WE (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2:235–43CrossRefPubMedGoogle Scholar
  23. Frippiat C, Chen QM, Zdanov S, Magalhaes J-P, Remacle J, Toussaint O (2001) Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 276:2531–2537CrossRefPubMedGoogle Scholar
  24. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514CrossRefPubMedGoogle Scholar
  25. Hayflick L (2000) The illusion of cell immortality. Br J Cancer 83:841–846CrossRefPubMedGoogle Scholar
  26. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  27. Herbig U, Ferreira M, Condel L, Carey D, Sedivy J (2006) Cellular senescence in aging primates. Science 311:1257CrossRefPubMedGoogle Scholar
  28. Hermjakob H (2006) The HUPO proteomics standards initiative-overcoming the fragmentation of proteomics data. Proteomics 6:34–38CrossRefPubMedGoogle Scholar
  29. Hutter E, Unterluggauer H, Uberall F, Schramek H, Jansen-Durr P (2002) Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress. Exp Gerontol 37:1165–1174CrossRefPubMedGoogle Scholar
  30. Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380:919–928CrossRefPubMedGoogle Scholar
  31. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426PubMedGoogle Scholar
  32. Jazwinski SM (2005) The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene 354:22–27CrossRefPubMedGoogle Scholar
  33. Jeyapalan JC, Ferreiraa M, Sedivya JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44Google Scholar
  34. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484CrossRefPubMedGoogle Scholar
  35. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565CrossRefPubMedGoogle Scholar
  36. Keys B, Serra V, Saretzki G, von Zglinicki T (2004) Telomere shortening in human fibroblasts is not dependent on the size of the telomeric-3′-overhang. Aging Cell 3:103–109CrossRefPubMedGoogle Scholar
  37. Kill IR, Faragher RG, Lawrence K, Shall S (1994) The expression of proliferation-dependent antigens during the lifespan of normal and progeroid human fibroblasts in culture. J Cell Sci 107:571–579PubMedGoogle Scholar
  38. Kim K, Kim M, Seu Y, Chung H, Kim J, Kim J (2007a) Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells. Aging Cell 6:535–545CrossRefPubMedGoogle Scholar
  39. Kim KS, Seu YB, Baek S-H, Kim MJ, Kim KJ, Kim JH, Kim J-R (2007b) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 18:4543–4552CrossRefPubMedGoogle Scholar
  40. Kirkwood TB, Kowald A (1997) Network theory of aging. Exp Gerontol 32:395–399CrossRefPubMedGoogle Scholar
  41. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457CrossRefPubMedGoogle Scholar
  42. Krtolica A, Parrinello S, Lockett S, Desprez P-Y, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077CrossRefPubMedGoogle Scholar
  43. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94CrossRefPubMedGoogle Scholar
  44. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031CrossRefPubMedGoogle Scholar
  45. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691CrossRefPubMedGoogle Scholar
  46. Lee H-W, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574CrossRefPubMedGoogle Scholar
  47. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu Z-X, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940CrossRefPubMedGoogle Scholar
  48. Lee I, Date S, Adai A, Marcotte E (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558CrossRefPubMedGoogle Scholar
  49. Lee I, Li Z, Marcotte EM (2007) An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS ONE 2:e988CrossRefPubMedGoogle Scholar
  50. Lee S, Jeong S-Y, Lim W-C, Kim S, Park Y-Y, Sun X, Youle RJ, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983CrossRefPubMedGoogle Scholar
  51. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960CrossRefPubMedGoogle Scholar
  52. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117–3126CrossRefPubMedGoogle Scholar
  53. Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–46CrossRefPubMedGoogle Scholar
  54. Macip S, Igarashi M, Fang L, Chen A, Pan Z, Lee S, Aaronson S (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188CrossRefPubMedGoogle Scholar
  55. Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585CrossRefPubMedGoogle Scholar
  56. Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319CrossRefPubMedGoogle Scholar
  57. Martin-Ruiz C, Saretzki G, Petrie J, Ladhoff J, Jeyapalan J, Wei W, Sedivy J, von Zglinicki T (2004) Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span. J Biol Chem 279:17826–17833CrossRefPubMedGoogle Scholar
  58. Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653CrossRefPubMedGoogle Scholar
  59. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17:1583–1592CrossRefPubMedGoogle Scholar
  60. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452CrossRefPubMedGoogle Scholar
  61. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503CrossRefPubMedGoogle Scholar
  62. Narita M, Nuñez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716CrossRefPubMedGoogle Scholar
  63. Ng A, Bursteinas B, Gao Q, Mollison E, Zvelebil M (2006) Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform 7:318–330CrossRefPubMedGoogle Scholar
  64. Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201:1496–1499PubMedGoogle Scholar
  65. Passos JF, von Zglinicki T (2008) Retrograde response, oxidative stress and cellular senescence. In: Miwa S, Beckman KB, Muller FL (eds) Oxidative stress in aging: from model systems to human diseases. Humana, Totowa, pp 39 52Google Scholar
  66. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birkett M, Harold G, Schaeuble K, Birch-Machin M, Kirkwood T, von Zglinicki T (2007a) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110CrossRefPubMedGoogle Scholar
  67. Passos JF, Von Zglinicki T, Kirkwood TB (2007b) Mitochondria and ageing: winning and losing in the numbers game. BioEssays 29:908–917CrossRefPubMedGoogle Scholar
  68. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305CrossRefPubMedGoogle Scholar
  69. Ramsey MR, Sharpless NE (2006) ROS as tumour suppressor? Nat Cell Biol 8:1213–1215CrossRefPubMedGoogle Scholar
  70. Rastogi S, Joshi B, Dasgupta P, Morris M, Wright K, Chellappan S (2006) Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol Cell Biol 26:4161–4171CrossRefPubMedGoogle Scholar
  71. Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042CrossRefPubMedGoogle Scholar
  72. Rubelj I, Vondracek Z (1999) Stochastic mechanism of cellular aging-abrupt telomere shortening as a model for stochastic nature of cellular aging. J Theor Biol 197:425–438CrossRefPubMedGoogle Scholar
  73. Serra V, von Zglinicki T, Lorenz M, Saretzki G (2003) Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 278:6824–6830CrossRefPubMedGoogle Scholar
  74. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171CrossRefPubMedGoogle Scholar
  75. Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12:201–205CrossRefPubMedGoogle Scholar
  76. Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–410CrossRefPubMedGoogle Scholar
  77. Sitte N, Merker K, von Zglinicki T, Grune T (2000) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 28:701–708CrossRefPubMedGoogle Scholar
  78. Sitte N, Merker K, Grune T, von Zglinicki T (2001) Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress. Exp Gerontol 36:475–486CrossRefPubMedGoogle Scholar
  79. Smith JR, Whitney RG (1980) Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207:82–84CrossRefPubMedGoogle Scholar
  80. Sozou PD, Kirkwood T (2001) A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. J Theor Biol 213:573–586CrossRefPubMedGoogle Scholar
  81. Stewart SA, Ben-Porath I, Carey VJ, O'Connor BF, Hahn WC, Weinberg RA (2003) Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 33:492–496CrossRefPubMedGoogle Scholar
  82. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E (2006) Mitogenic signalling and the p16(INK4a)-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297CrossRefPubMedGoogle Scholar
  83. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556CrossRefPubMedGoogle Scholar
  84. Thomas E, Al-Baker E, Dropcova S, Denyer S, Ostad N, Lloyd A, Kill IR, Faragher RGA (1997) Different kinetics of senescence in human fibroblasts and peritoneal mesothelial cells. Exp Cell Res 236:355–358CrossRefPubMedGoogle Scholar
  85. Titz B, Schlesner M, Uetz P (2004) What do we learn from high-throughput protein interaction data? Exp Rev Proteom 1:111–121CrossRefGoogle Scholar
  86. Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A (2000) Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene 19:1698–1709CrossRefPubMedGoogle Scholar
  87. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53CrossRefPubMedGoogle Scholar
  88. von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193CrossRefGoogle Scholar
  89. von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28:64–74CrossRefGoogle Scholar
  90. Von Zglinicki T, Petrie J, Kirkwood TB (2003) Telomere-driven replicative senescence is a stress response. Nat Biotechnol 21:229–230CrossRefGoogle Scholar
  91. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374CrossRefPubMedGoogle Scholar
  92. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell (in press). Published online: Apr 9 2009, doi: 10.1111/j.1474-9726.2009.00481.x
  93. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201CrossRefPubMedGoogle Scholar
  94. Wong K-K, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648CrossRefPubMedGoogle Scholar
  95. Xu D, Finkel T (2002) A role for mitochondria as potential regulators of cellular life span. Biochem Biophys Res Commun 294:245–248CrossRefPubMedGoogle Scholar
  96. Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot J, Tavaré S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803CrossRefPubMedGoogle Scholar
  97. Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE (2004) Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 15:3709–3718CrossRefPubMedGoogle Scholar
  98. Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P (2003) Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 376:403–411CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2009

Authors and Affiliations

  • João F. Passos
    • 1
  • Cedric Simillion
    • 1
  • Jennifer Hallinan
    • 1
  • Anil Wipat
    • 1
  • Thomas von Zglinicki
    • 1
  1. 1.Ageing Biology Laboratories and Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN), Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations