, Volume 31, Issue 4, pp 269–276 | Cite as

Nitrones for understanding and ameliorating the oxidative stress associated with aging

  • Siham El Fangour
  • Milvia Marini
  • James Good
  • Stephen J. McQuaker
  • Paul G. Shiels
  • Richard C. HartleyEmail author


Oxidative damage from reactive oxygen species (ROS) and the carbon-centred radicals arising from them is important to the process of aging, and age-related diseases are generally caused, exacerbated or mediated by oxidative stress. Nitrones can act as spin traps to detect, identify, quantify and locate the radicals responsible using electron paramagnetic resonance (EPR or ESR) spectroscopy, and a new carnitine-derived nitrone, CarnDOD-7C, designed to accumulate in mitochondria is reported. Nitrones also have potential as therapeutic antioxidants, e.g. for slowing cellular aging, and as tools for chemical biology. Two low-molecular weight nitrones, DIPEGN-2 and DIPEGN-3, are reported, which combine high water-solubility with high lipophilicity and obey Lipinski's rule of five.


Aging Oxidative stress Reactive oxygen species Radicals Electron paramagnetic resonance spectroscopy Nitrones Antioxidants 



Scottish Enterprise for Proof of Concept funding. SPARC and the BBSRC for the purchase of the bench-top EPR spectrometer used.


  1. Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA Jr, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287CrossRefGoogle Scholar
  2. Caldwell ST, Quin C, Edge R, Hartley RC (2007) A dual sensor spin trap for use with EPR spectroscopy. Org Lett 9:3499–3502. doi: 10.1021/ol071285o CrossRefPubMedGoogle Scholar
  3. Cipollone M, De Maria P, Fontana A, Frascari S, Gobbi L, Spinelli D, Tinti M (2000) Formation of micelles and liposomes from carnitine amphiphiles. Eur J Med Chem 35:903–911CrossRefPubMedGoogle Scholar
  4. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639. doi: 10.1021/ja802355u CrossRefPubMedGoogle Scholar
  5. Floyd RA, Kopke RD, Choi C-H, Foster SB, Doblas S, Towner RA (2008) Nitrones as therapeutics. Free Radic Biol Med 45:1361–1374. doi: 10.1016/j.freeradbiomed.2008.08.017 CrossRefPubMedGoogle Scholar
  6. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  7. Hardy M, Chalier F, Ouari O, Finet JP, Rockenbauer A, Kalyanaraman B, Tordo P (2007a) Mito-DEPMPO synthesized from a novel NH2-reactive DEPMPO spin trap: a new and improved trap for the detection of superoxide. Chem Commun (Camb) 2007:1083–1085. doi: 10.1039/b616076j
  8. Hardy M, Rockenbauer A, Vasquez-Vivar J, Felix C, Lopez M, Srinivasan S, Avadhani N, Tordo P, Kalyanaraman B (2007b) Detection, characterization, and decay kinetics of ROS and thiyl adducts of Mito-DEPMPO spin trap. Chem Res Toxicol 20:1053–1060. doi: 10.1021/tx700101d CrossRefPubMedGoogle Scholar
  9. Hay A, Burkitt MJ, Jones CM, Hartley RC (2005) Development of a new EPR spin trap, DOD-8C (N-[4-dodecyloxy-2-(7'-carboxyhept-1'-yloxy) benzylidene]-N-tert-butylamin N-oxide), for the trappingof lipid radicals at a predetermined depth within biological membranes. Arch Biochem Biophys 435:336–346. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  10. James AM, Cochemé HM, Murphy MP (2005) Mitochondria-targeted probes as tools in the study of oxidative damage and ageing. Mech Ageing Dev 126:982–986. doi: 10.1016/j.mad.2005.03.026 CrossRefPubMedGoogle Scholar
  11. Lide DR (2002) CRC handbook of chemistry and physics, 83rd edn. CRC, Boca Raton, pp 8–127Google Scholar
  12. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi: 10.1038/nature05292 CrossRefPubMedGoogle Scholar
  13. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. doi: 10.1016/S0169-409X(96)00423-1 CrossRefGoogle Scholar
  14. Lohninger A, Pittner G, Pittner F (2005) l-Carnitine: new aspects of a known compound—a brief survey. Monatsh Chem 136:1255–1268. doi: 10.1007/s00706-005-0339-2 CrossRefGoogle Scholar
  15. Muller FL, Lustgarten MS, Jang W, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503. doi: 10.1016/j.freeradbiomed.2007.03.034 CrossRefPubMedGoogle Scholar
  16. Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110 CrossRefPubMedGoogle Scholar
  17. Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RA, Brand MD (2003) Superoxide activates uncoupling proteins by generating carbon-centred radicals and initiating lipid peroxidation. J Biol Chem 278:48534–48545. doi: 10.1074/jbc.M308529200 CrossRefPubMedGoogle Scholar
  18. Robertson L, Hartley RC (2009) Synthesis of N-arylpyridinium salts bearing a nitrone spin trap as potential mitochondria-targeted antioxidants. Tetrahedron 65:(in press).  doi:10.1016/j.tet.2009.04.083
  19. Rosen GM, Britigan BE, Halpern HJ, Pou S (1999) Free radicals: biology and detection by spin trapping. Oxford University Press, OxfordGoogle Scholar
  20. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911. doi: 10.1126/science.1106653 CrossRefPubMedGoogle Scholar
  21. Shea TB (2007) Effects of dietary supplementation with N-acetyl cysteine, acetyl l-carnitine and S-adenosyl methionine on the cognitive performance and aggression in normal mice and mice expressing human ApoE4. Neuromol Med 9:264–269. doi: 10.1007/s12017-007-8005-y CrossRefGoogle Scholar
  22. Sklavounou E, Hay A, Ashraf N, Lamb K, Brown E, MacIntyre A, George WD, Hartley RC, Shiels PG (2006) The use of telomere biology to identify and develop superor nitrone based anti-oxidants. Biochem Biophys Res Commun 347:420–427 Corrigendum: ibid 348:1206CrossRefPubMedGoogle Scholar
  23. Skulachev VP (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385–1396. doi: 10.1134/S0006297907120139 CrossRefGoogle Scholar
  24. Soh N (2006) Recent advances in fluorescent probes for detection of reactive oxygen species. Anal Bioanal Chem 386:532–543. doi: 10.1007/s00216-006-0366-9 CrossRefPubMedGoogle Scholar
  25. Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC, Mitchell JB (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42:1632–1650. doi: 10.1016/j.freeradbiomed.2007.02.030 CrossRefPubMedGoogle Scholar
  26. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitroosative species in cells and tissues. Free Radic Biol Med 43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026 CrossRefPubMedGoogle Scholar
  27. Wipf P, Xiao J, Jiang J, Belikova NA, Tyurin VA, Fink MP, Kagan VE (2005) Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc 127:12460–12461. doi: 10.1021/ja053679l CrossRefPubMedGoogle Scholar
  28. Xu Y, Kalyanaraman B (2007) Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group—a suitable trap for mitochondria-generated ROS? Free Radic Res 41:1–7. doi: 10.1080/10715760600911147 CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2009

Authors and Affiliations

  • Siham El Fangour
    • 1
  • Milvia Marini
    • 2
  • James Good
    • 1
  • Stephen J. McQuaker
    • 1
  • Paul G. Shiels
    • 3
  • Richard C. Hartley
    • 1
    Email author
  1. 1.Centre for the Chemical Research of Ageing, WestCHEM Department of ChemistryUniversity of GlasgowGlasgowUK
  2. 2.Dipartimento di Scienze e ChimicheUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Department of SurgeryUniversity of GlasgowGlasgowUK

Personalised recommendations