, 31:99 | Cite as

Reduced extracellular phagocyte oxidative activity, antioxidant level changes and increased oxidative damage in healthy human blood as a function of age

  • Margarita L. AlexandrovaEmail author
  • Petyo G. Bochev


Age-related changes in the blood antioxidant status, in the prooxidative activity of peripheral phagocytes and in the markers of oxidative injury were simultaneously examined in the circulation of 45 middle-aged and elderly healthy volunteers. The results showed a decrease in the opsonin-dependent and -independent extracellular-phagocyte oxidative activity, evaluated by means of luminol chemiluminescence. An increase in the portion of the mitochondrial superoxide generation within the total oxidative phagocyte response was evaluated by means of lucigenin chemiluminescence. The erythrocyte copper/zinc superoxide dismutase increased with age, while blood catalase and glutathione peroxidase activities remained unchanged. The levels of blood SH-groups decreased with age. An age-related increase in blood concentration of thiobarbituric acid-reactive material, a marker of oxidative damage, was detected. Some data, illustrating the existence of a delicate balance between oxidants and prooxidants, were also obtained. Further studies on the interrelationship between the components determining pro/antioxidative status in an organism may prove useful for developing a complex strategy in combating ageing.


Reactive oxygen species Peripheral phagocytes Lipid peroxidation CuZn superoxide dismutase SH-groups Elderly humans 


  1. Agarwal S, Sohal R (1994) DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA 91:12332–12335. doi: 10.1073/pnas.91.25.12332 PubMedCrossRefGoogle Scholar
  2. Allen RG, Farmer KJ, Sohal RS (1984) Effect of diamide administration on the longevity, oxygen consumption, superoxide dismutase, catalase, inorganic peroxides and glutathione in the adult housefly, Musca domestica. Comp Biochem Physiol 78C:31–33Google Scholar
  3. Allen R, Toy P, Newton R et al (1985) Effects of experimentally altered glutathione levels on life span, metabolic rate, superoxide dismutase, catalase and inorganic peroxides in the adult housefly, Musca domestica. Comp Biochem Physiol C82(2):399–402Google Scholar
  4. Asakawa T, Matsushita S (1980) Thiobarbituric acid test for detecting lipid peroxides. Lipids 14:401–406. doi: 10.1007/BF02533425 CrossRefGoogle Scholar
  5. Blakely SR, Slaughter L, Adkins J et al (1988) Effects of beta-carotene and retinyl palmitate on corn oil-induced superoxide dismutase and catalase in rats. J Nutr 118(2):152–158PubMedGoogle Scholar
  6. Block G, Dietrich M, Norkus EP et al (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156(3):275–285. doi: 10.1093/aje/kwf029 CrossRefGoogle Scholar
  7. Bogdanska JJ, Korneti P, Todorova B (2003) Erythrocyte superoxide dismutase, glutathione peroxidase and catalase activities in healthy male subjects in Republic of Macedonia. Bratisl Lek Listy (Tlacene Vyd) 104(3):108–114Google Scholar
  8. Bochev P, Bechev B, Magrisso M (1992) Six-sample multiplexing computerized analyzer for integral and spectral luminescence measurements. Anal Chim Acta 256:29–32. doi: 10.1016/0003-2670(92)85321-V CrossRefGoogle Scholar
  9. Bochev B, Magrisso M, Bochev P et al (1993) Dependence of whole blood luminol chemiluminescence on PMNL and RBC count. J Biochem Biophys Methods 27(4):301–309. doi: 10.1016/0165-022X(93)90011-C PubMedCrossRefGoogle Scholar
  10. Bolzan AD, Bianchi MS, Bianchi NO (1997) Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: influence of sex, age and cigarette smoking. Clin Biochem 30(6):449–454. doi: 10.1016/S0009-9120(97)00047-7 PubMedCrossRefGoogle Scholar
  11. Cadenas E, Poderoso J, Antunes F et al (2000) Analysis of the pathways of nitric oxide utilization in mitochondria. Free Radic Res 33:747–756. doi: 10.1080/10715760000301271 PubMedCrossRefGoogle Scholar
  12. Casado A, López-Fernandez ME (2003) Age-correlated changes of the erythrocyte catalase activity in the Spanish population. Gerontology 49(4):251–254. doi: 10.1159/000070406 PubMedCrossRefGoogle Scholar
  13. Chen H, Cangello D, Benson S et al (2001) Age-related increase in mitochondrial superoxide generation in the testosterone-producing cells of Brown Norway rat testes: relationship to reduced steroidogenic function. Exp Gerontol 36(8):1361–1373. doi: 10.1016/S0531-5565(01)00118-8 PubMedCrossRefGoogle Scholar
  14. Di Massimo C, Lo Presti R, Corbacelli C et al (2006) Impairment of plasma nitric oxide availability in senescent healthy individuals:apparent involvement of extracellular superoxide dismutase activity. Clin Hemorheol Microcirc 35(1–2):231–237PubMedGoogle Scholar
  15. Douzou P, Maurel P (1977) Ionic regulation in genetic translation systems. Proc Natl Acad Sci USA 74(3):1013–1015. doi: 10.1073/pnas.74.3.1013 PubMedCrossRefGoogle Scholar
  16. Ellman G (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi: 10.1016/0003-9861(59)90090-6 PubMedCrossRefGoogle Scholar
  17. Gilca M, Stoian I, Atanasiu V et al (2007) The oxidative hypothesis of senescence. J Postgrad Med 53(3):207–213PubMedCrossRefGoogle Scholar
  18. Hack V, Breitkreutz R, Kinscherf R et al (1998) The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood 92:59–67PubMedGoogle Scholar
  19. Hensley K, Maidt L, Stewart CA et al (1999) Mitochondrial alteration in aging and inflammation: a possible site of action ofnitrone-based free radical traps. In: Cadenas E (ed) Understanding the process of aging. Marcel Dekker, New York, pp 311–326Google Scholar
  20. Hill KE, Burk RF, Lane JM (1987) Effect of selenium depletion and repletion on plasma glutathione and glutathione-dependent enzymes in the rat. J Nutr 117(1):99–104PubMedGoogle Scholar
  21. Ho SP, Chan-Yeung M, Chow KK (2005) Antioxidant enzyme activities in healthy Chinese adults: influence of age, gender and smoking. Respirology 10(3):305–309. doi: 10.1111/j.1440-1843.2005.00702.x PubMedCrossRefGoogle Scholar
  22. Kasapoglu M, Ozben T (2001) Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 36(2):209–320. doi: 10.1016/S0531-5565(00)00198-4 PubMedCrossRefGoogle Scholar
  23. Kedziora-Kornatowska K, Szewczyk-Golec K, Czuczejko J et al (2007) Effect of melatonin on the oxidative stress in erythrocytes of healthy young and elderly subjects. J Pineal Res 42(2):153–158. doi: 10.1111/j.1600-079X.2006.00394.x PubMedCrossRefGoogle Scholar
  24. Maral J, Puget K, Michelson A (1977) Comparative studies of SOD, catalase and glutathione peroxidase in erythrocytes of different animals. Biochem Biophys Res Commun 77:1525–1535. doi: 10.1016/S0006-291X(77)80151-4 PubMedCrossRefGoogle Scholar
  25. Mecocci P, Polidori MC, Troiano L et al (2000) Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 28(8):1243–1248. doi: 10.1016/S0891-5849(00)00246-X PubMedCrossRefGoogle Scholar
  26. Ozturk O, Gumuslu S (2004) Changes in glucose-6-phosphate dehydrogenase, copper zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age. Exp Gerontol 39(2):211–216. doi: 10.1016/j.exger.2003.10.015 PubMedCrossRefGoogle Scholar
  27. Passos JF, von Zglinicki T, Saretzki G (2006) Mitochondrial dysfunction and cell senescence: cause or consequence. Rejuvenation Res 9(1):64–68. doi: 10.1089/rej.2006.9.64 PubMedCrossRefGoogle Scholar
  28. Pereslegina I (1989) Salivary antioxidant enzymes activity in normal children. Lab Delo 11:20–23PubMedGoogle Scholar
  29. Perskin MH, Cronstein BN (1992) Age-related changes in neutrophil structure and function. Mech Ageing Dev 64(3):303–313. doi: 10.1016/0047-6374(92)90086-S PubMedCrossRefGoogle Scholar
  30. Rizvi SI, Maurya PK (2007) Alterations in antioxidant enzymes during aging in humans. Mol Biotechnol 37(1):58–61. doi: 10.1007/s12033-007-0048-7 PubMedCrossRefGoogle Scholar
  31. Sanz A, Gómez J, Caro P (2006) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38(5–6):327–333. doi: 10.1007/s10863-006-9051-0 PubMedCrossRefGoogle Scholar
  32. Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:302–326. doi: 10.1081/DMR-100102336 CrossRefGoogle Scholar
  33. Sigma (1997) Catalase assay. In: Sigma Chemie Catalog 1997. Sigma-Aldrich, St Louis, p 254Google Scholar
  34. Sohal RS, Allen RG (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522. doi: 10.1016/0531-5565(90)90017-V PubMedCrossRefGoogle Scholar
  35. Sohal RS, Allen RG, Farmer KJ (1985) Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mech Ageing Dev 31(3):329–336. doi: 10.1016/0047-6374(85)90098-3 PubMedCrossRefGoogle Scholar
  36. Sohal RS, Sohal BH, Orr WC (1995) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med 19(4):499–504. doi: 10.1016/0891-5849(95)00037-X PubMedCrossRefGoogle Scholar
  37. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258. doi: 10.1080/10715760600918142 PubMedCrossRefGoogle Scholar
  38. Storz P (2006) Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci STKE 332:re3. doi: 10.1126/stke.3322006re3 CrossRefGoogle Scholar
  39. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228PubMedGoogle Scholar
  40. Tosi M, Hamedani A (1992) A rapid, specific assay for superoxide release from phagocytes in small volumes of whole blood. Am J Clin Pathol 97:566–573PubMedGoogle Scholar
  41. Volkovova K, Beno I, Staruchova M et al (1996) Antioxidative enzyme activity in the blood of healthy persons. Bratisl Lek Listy (Tlacene Vyd) 97(3):134–138Google Scholar
  42. Volkovova K, Barancokova M, Kazimirova A et al (2005) Antioxidant supplementation reduces inter-individual variation in markers of oxidative damage. Free Radic Res 39(6):659–666. doi: 10.1080/10715760500117472 PubMedCrossRefGoogle Scholar
  43. Walan A, Dahlgren C, Kihlstrom E et al (1992) Phagocyte killing of Campylobacter jejuni in relation to oxidative activation. Path Microbiol Immunol Scand 100:424–430Google Scholar
  44. Yagi K (1987) Lipid peroxides and human diseases. Chem Phys Lipids 45:337–351. doi: 10.1016/0009-3084(87)90071-5 PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2009

Authors and Affiliations

  1. 1.Department of BiophysicsMedical UniversityPlevenBulgaria

Personalised recommendations