, Volume 30, Issue 4, pp 251–261 | Cite as

Aging of the striatum: mechanisms and interventions

  • Hiroyuki UmegakiEmail author
  • George S. Roth
  • Donald K. Ingram


Motor function declines with increasing adult age. Proper regulation of the balance between dopamine (DA) and acetylcholine (ACh) in the striatum has been shown to be fundamentally important for motor control. Although other factors can also contribute to this age-associated decline, a decrease in the concentration and binding potential of the DA D2 receptor subtype in the striatum, especially in the cholinergic interneurons, are involved in the mechanism. Our studies have shown that gene transfer of the DA D2 receptor subtype with adenoiviral vectors is effective in ameliorating age-associated functional decline of the striatal cholinergic interneurons. These achievements confirm that an age-associated decrease of D2R contributes functional alteration of the interaction of DA and ACh in the striatum and demonstrate that these age-associated changes indeed are modifiable.


Dopamine receptor D2 Viral vector Acetylcholine Interneuron 


  1. Berg MJ, Ebert B, Willis DK, Host T, Fincham RW, Schottelius DD (1987) Parkinsonism-drug treatment. Part I. Drug Intell Clin Pharm 21:10–21PubMedGoogle Scholar
  2. Bolam JP, Bennett BD (1995) Microcircuitry of the neostriatum. In: Ariano MA, Surmeier DJ (eds) Molecular and cellular mechanisms of neostriatal function. Landes, AustinGoogle Scholar
  3. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126PubMedCrossRefGoogle Scholar
  4. Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 38:271–276PubMedCrossRefGoogle Scholar
  5. Carp JS, Anderson RJ (1979) Sensorimotor deficits produced by phenytoin and chlorpromazine in unanesthetized cats. Pharmacol Biochem Behav 10:513–520PubMedCrossRefGoogle Scholar
  6. Chang HT (1988) Dopamine-acetylcholine interaction in the rat striatum: a dual-labeling immunocytochemical study. Brain Res Bull 21:295–230PubMedCrossRefGoogle Scholar
  7. Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–944PubMedCrossRefGoogle Scholar
  8. Das A, Dikshit M, Nath C (2001) Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci 68:1545–1555PubMedCrossRefGoogle Scholar
  9. DeBoer P, Heeringa MJ, Abercrombie ED (1996) Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur J Pharmacol 317:257–262PubMedCrossRefGoogle Scholar
  10. Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2:21–29PubMedCrossRefGoogle Scholar
  11. Della Vedova F, Fumagalli F, Sacchetti G, Racagni G, Brunello N (1992) Age-related variations in relative abundance of alternative spliced D2 receptor mRNAs in brain areas of two rat strains. Brain Res Mol Brain Res 12:357–359PubMedCrossRefGoogle Scholar
  12. Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233PubMedCrossRefGoogle Scholar
  13. Dimova R, Vuillet J, Nieoullon A, Kerkerian-Le Goff L (1993) Ultrastructural features of the choline acetyltransferase-containing neurons and relationships with nigral dopaminergic and cortical afferent pathways in the rat striatum. Neuroscience 53:1059–1071PubMedCrossRefGoogle Scholar
  14. Dorfman LJ, Bosley TM (1979) Age-related changes in peripheral and central nerve conduction in man. Neurology 29:38–44PubMedGoogle Scholar
  15. Dutta C, Hadley EC, Lexell J (1997) Sarcopenia and physical performance in old age: overview. Muscle Nerve 5:S5–S9PubMedCrossRefGoogle Scholar
  16. Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14PubMedGoogle Scholar
  17. Gage NH, Dunnett SB, Stenevi U, Bjorklund A (1983) Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221:966–969PubMedCrossRefGoogle Scholar
  18. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRefGoogle Scholar
  19. Han Z, Kuyatt BL, Kochman KA, DeSouza EB, Roth GS (1989) Effect of aging on concentrations of D2-receptor-containing neurons in the rat striatum. Brain Res 498:299–307PubMedCrossRefGoogle Scholar
  20. Henry JM, Roth GS (1984) Effect of aging on recovery of striatal dopamine receptors following N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquino- line (EEDQ) blockade. Life Sci 35:899–904PubMedCrossRefGoogle Scholar
  21. Henry JM, Joseph JA, Kochman K, Roth GS (1987) Effect of aging on striatal dopamine receptor subtype recovery following N-ethoxycarbonyl -2-ethoxy-1,2-dihydroquinoline blockade and relation to motor function in Wistar rats. Brain Res 418:334–342PubMedCrossRefGoogle Scholar
  22. Herman JP, Lupp A, Abrous N, Le Moal M, Hertting G, Jackisch R (1988) Intrastriatal dopaminergic grafts restore inhibitory control over striatal cholinergic neurons. Exp Brain Res 73:236–248PubMedCrossRefGoogle Scholar
  23. Ikari H, Zhang L, Chernak JM, Mastrangeli A, Kato S, Kuo H, Crystal RG, Ingram DK, Roth GS (1995) Adenovirus-mediated gene transfer of dopamine D2 receptor cDNA into rat striatum. Brain Res Mol Brain Res 34:315–320PubMedCrossRefGoogle Scholar
  24. Ingram DK, Ikari H, Umegaki H, Chernak JM, Roth GS (1998) Application of gene therapy to treat age-related loss of dopamine D2 receptor. Exp Gerontol 33:793–804PubMedCrossRefGoogle Scholar
  25. Jackisch R, Duschek M, Neufang B, Rensing H, Hertting G, Herman JP (1991) Long-term survival of intrastriatal dopaminergic grafts: modulation of acetylcholine release by graft-derived dopamine. J Neurochem 57:267–276PubMedCrossRefGoogle Scholar
  26. Joseph JA, Roth GS (1988a) Upregulation of striatal dopamine receptors and improvement of motor performance in senescence. Ann N Y Acad Sci 515:355–356PubMedCrossRefGoogle Scholar
  27. Joseph JA, Roth GS (1988b) Altered striatal dopaminergic and cholinergic reciprocal inhibitory control and motor behavioral decrements in senescence. Ann N Y Acad Sci 521:110–122PubMedCrossRefGoogle Scholar
  28. Joseph JA, Roth GS, Strong R (1990) The striatum, a microcosm for the examination of age-related alterations in the CNS. Review of biological research in aging. Liss, New YorkGoogle Scholar
  29. Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (2000) Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289:633–637PubMedCrossRefGoogle Scholar
  30. Kolb B, Forgie M, Gibb R, Gorny G, Rowntree S (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22:143–159PubMedCrossRefGoogle Scholar
  31. Kozlowski MR, Marshall JF (1981) Plasticity of neostriatal metabolic activity and behavioral recovery from nigrostriatal injury. Exp Neurol 74:318–323PubMedCrossRefGoogle Scholar
  32. Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M (1987) Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res 413:179–184PubMedCrossRefGoogle Scholar
  33. Kurotani S, Umegaki H, Ishiwata K, Suzuki Y, Iguchi A (2003) The age-associated changes of dopamine-acetylcholine interaction in the striatum. Exp Gerontol 38:1009–1013PubMedCrossRefGoogle Scholar
  34. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545PubMedCrossRefGoogle Scholar
  35. Lexell J (1997) Evidence for nervous system degeneration with advancing age. J Nutr 127:1011S–1013SPubMedGoogle Scholar
  36. Marshall JF, Berrios N (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206:477–479PubMedCrossRefGoogle Scholar
  37. Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, Surmeier DJ (2004) D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci 24:10289–10301PubMedCrossRefGoogle Scholar
  38. Mensah PL (1980) Distribution of the largest neuron in mouse caudate-putamen nucleus: its position in large-cell–medium-cell clusters. Exp Brain Res 38:267–271PubMedCrossRefGoogle Scholar
  39. Morgan DG, Finch CE (1988) Dopaminergic changes in the basal ganglia. A generalized phenomenon of aging in mammals. Ann N Y Acad Sci 515:145–160PubMedCrossRefGoogle Scholar
  40. Norman AB, Battaglia G, Creese I (1987) Differential recovery rates of rat D2 dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: a key to receptor regulatory mechanisms. J Neurosci 7:1484–1491PubMedGoogle Scholar
  41. Ogawa N, Asanuma M, Kondo Y, Nishibayashi S, Mori A (1994) Reduced choline acetyltransferase activity and muscarinic M1 receptor levels in aged Fisher 344 rat brains did not parallel their respective mRNA levels. Brain Res 658:87–92PubMedCrossRefGoogle Scholar
  42. Ogawa O, Umegaki H, Ishiwata K, Asai Y, Ikari H, Oda K, Toyama H, Ingram DK, Roth GS, Iguchi A, Senda M (2000) In vivo imaging of adenovirus-mediated over-expression of dopamine D2 receptors in rat striatum by positron emission tomography. Neuroreport 11:743–748PubMedCrossRefGoogle Scholar
  43. Pickel VM, Chan J (1990) Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum. J Neurosci Res 25:263–280PubMedCrossRefGoogle Scholar
  44. Pickel VM, Chan J (1991) Plasmalemmal appositions between cholinergic and non-cholinergic neurons in rat caudate-putamen nuclei. Neuroscience 41:459–472PubMedCrossRefGoogle Scholar
  45. Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G (2000) Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci 20:RC69PubMedGoogle Scholar
  46. Pisani A, Bonsi P, Picconi B, Tolu M, Giacomini P, Scarnati E (2001) Role of tonically-active neurons in the control of striatal function: cellular mechanisms and behavioral correlates. Prog Neuropsychopharmacol Biol Psychiatry 25:211–213PubMedCrossRefGoogle Scholar
  47. Potvin AR, Syndulko K, Tourtellotte WW, Lemmon JA, Potvin JH (1980) Human neurologic function and the aging process. J Am Geriatr Soc 28:1–9PubMedGoogle Scholar
  48. Puschban Z, Scherfler C, Granata R, Laboyrie P, Quinn NP, Jenner P, Poewe W, Wenning GK (2000) Autoradiographic study of striatal dopamine re-uptake sites and dopamine D1 and D2 receptors in a 6-hydroxydopamine and quinolinic acid double-lesion rat model of striatonigral degeneration (multiple system atrophy) and effects of embryonic ventral mesencephalic, striatal or co-grafts. Neuroscience 95:377–388PubMedCrossRefGoogle Scholar
  49. Pycock CJ (1980) Turning behaviour in animals. Neuroscience 5:461–514PubMedCrossRefGoogle Scholar
  50. Rech RH, Borys HK, Moore KE (1966) Alterations in behavior and brain catecholamine levels in rats treated with alpha-methyltyrosine. J Pharmacol Exp Ther 153:412–499PubMedGoogle Scholar
  51. Roth GS, Joseph JA (1994) Cellular and molecular mechanisms of impaired dopaminergic function during aging. Ann N Y Acad Sci 719:129–135PubMedCrossRefGoogle Scholar
  52. Sherman KA, Friedman E (1990) Pre- and post-synaptic cholinergic dysfunction in aged rodent brain regions: new findings and an interpretative review. Int J Dev Neurosci 8:689–708PubMedCrossRefGoogle Scholar
  53. Stoof JC, Drukarch B, de Boer P, Westerink BH, Groenewegen HJ (1992) Regulation of the activity of striatal cholinergic neurons by dopamine. Neuroscience 47:755–770PubMedCrossRefGoogle Scholar
  54. Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92CrossRefGoogle Scholar
  55. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–689PubMedCrossRefGoogle Scholar
  56. Umegaki H, Chernak JM, Ikari H, Roth GS, Ingram DK (1997) Rotational behavior produced by adenovirus-mediated gene transfer of dopamine D2 receptor into rat striatum. Neuroreport 8:3553–3558PubMedCrossRefGoogle Scholar
  57. Umegaki H, Ishiwata K, Ogawa O, Ingram DK, Roth GS, Yoshimura J, Oda K, Matsui-Hirai H, Ikari H, Iguchi A, Senda M (2002) In vivo assessment of adenoviral vector-mediated gene expression of dopamine D(2) receptors in the rat striatum by positron emission tomography. Synapse 43:195–200PubMedCrossRefGoogle Scholar
  58. Umegaki H, Ishiwata K, Ogawa O, Ingram DK, Roth GS, Oda K, Kurotani S, Kawamura K, Wang WF, Ikari H, Senda M, Iguchi A (2003) Longitudinal follow-up study of adenoviral vector-mediated gene transfer of dopamine D2 receptors in the striatum in young, middle-aged, and aged rats: a positron emission tomography study. Neuroscience 121:479–486PubMedCrossRefGoogle Scholar
  59. Umegaki H, Yamaguchi Y, Ishiwata K, Ingram DK, Roth GS, Iguchi A (2006) Functional recovery of the striatal cholinergic system in aged rats by adenoviral vector-mediated gene transfer of dopamine D2 receptor. Mech Ageing Dev 127:813–815PubMedCrossRefGoogle Scholar
  60. Wang L, Albrecht MA, Wurtman RJ (2007) Dietary supplementation with uridine-5′-monophosphate (UMP), a membrane phosphatide precursor, increases acetylcholine level and release in striatum of aged rat. Brain Res 1133:42–48PubMedCrossRefGoogle Scholar
  61. Weiss B, Chen JF, Zhang S, Zhou LW (1992) Developmental and age-related changes in the D2 dopamine receptor mRNA subtypes in rat brain. Neurochem Int 20:49S–58SPubMedCrossRefGoogle Scholar
  62. Wu CF, Bertorelli R, Sacconi M, Pepeu G, Consolo S (1988) Decrease of brain acetylcholine release in aging freely-moving rats detected by microdialysis. Neurobiol Aging 9:357–361PubMedCrossRefGoogle Scholar
  63. Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015PubMedGoogle Scholar
  64. Zambrzycka A, Alberghina M, Strosznajder JB (2002) Effects of aging and amyloid-beta peptides on choline acetyltransferase activity in rat brain. Neurochem Res 27:277–281PubMedCrossRefGoogle Scholar
  65. Zhang L, Ravipati A, Joseph J, Roth GS (1995) Aging-related changes in rat striatal D2 receptor mRNA-containing neurons: a quantitative nonradioactive in situ hybridization study. J Neurosci 15:1735–1740PubMedGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2008

Authors and Affiliations

  • Hiroyuki Umegaki
    • 1
    Email author
  • George S. Roth
    • 2
  • Donald K. Ingram
    • 3
  1. 1.Department of GeriatricsNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.GeroScience, Inc.PylesvilleUSA
  3. 3.Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeUSA

Personalised recommendations