, Volume 30, Issue 1, pp 31–42 | Cite as

Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes

  • Yuri Stroikin
  • Hanna Mild
  • Uno Johansson
  • Karin Roberg
  • Karin Öllinger


Cellular ageing is associated with accumulation of undegradable intralysosomal material, called lipofuscin. In order to accelerate the lipofuscin accumulation, confluent, growth-arrested human fibroblasts were cultured under hyperoxic conditions. To provide a better insight into the effects of lipofuscin on cellular functions, we compared lysosomal stability in control and lipofuscin-loaded human fibroblasts under conditions of lysosome-targeted stress induced by exposure to either the lysosomotropic detergent MSDH or the redox-cycling quinone naphthazarin. We show that lysosomal damage, assessed by acridine-orange relocation, translocation of cathepsin D to the cytosol, and alkalinization of lysosomes, is more pronounced in control than in lipofuscin-loaded fibroblasts. Finding that lysosomal integrity was less affected or even preserved in case of lipofuscin-loaded cells enables us to suggest that lipofuscin exerts lysosome-stabilizing properties.


Alkalinization Autophagolysosomes Bafilomycin A1 Cathepsin D MSDH Naphthazarin quinone 



We thank Linda Vainikka for technical assistance. This study was financially supported by Lions Research Foundation and by grant from the Medical Branch of the Swedish Research Council (Vetenskapsrådet).


  1. Bowman EJ, Siebers A and Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976PubMedCrossRefGoogle Scholar
  2. Brunk UT, Svensson I (1999) Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep 4:3–11PubMedCrossRefGoogle Scholar
  3. Brunk UT, Terman A (2002a) Lipofuscin: mechanisms of age-related accumulation and influence on cell functions. Free Radic Biol Med 33:611–619PubMedCrossRefGoogle Scholar
  4. Brunk UT, Terman A (2002b) The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002PubMedCrossRefGoogle Scholar
  5. Brunk UT, Neuzil J, Eaton JW (2001) Lysosomal involvement in apoptosis. Redox Rep 6:91–97PubMedCrossRefGoogle Scholar
  6. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492PubMedCrossRefGoogle Scholar
  7. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:255–263CrossRefGoogle Scholar
  8. Firestone RA, Pisano JM, Bonney RJ (1979) Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem 22:1130–1133PubMedCrossRefGoogle Scholar
  9. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906PubMedCrossRefGoogle Scholar
  10. Grune T, Merker K, Jung T, Sitte N, Davies KJ (2005) Protein oxidation and degradation during postmitotic senescence. Free Radic Biol Med 39:1208–1215PubMedCrossRefGoogle Scholar
  11. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 211:298–300Google Scholar
  12. Henics T, Wheatley DN (1999) Cytoplasmic vacuolation, adaptation and cell death: a view on new perspectives and features. Biol Cell 91:485–498PubMedCrossRefGoogle Scholar
  13. Johansson AC, Steen H, Öllinger K, Roberg K (2003) Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10:1253–1259PubMedCrossRefGoogle Scholar
  14. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162PubMedCrossRefGoogle Scholar
  15. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedCrossRefGoogle Scholar
  16. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39PubMedCrossRefGoogle Scholar
  17. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406PubMedCrossRefGoogle Scholar
  18. Nilsson C, Johansson U, Öllinger K (2003) Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. Methods Cell Sci 25:185–194PubMedCrossRefGoogle Scholar
  19. Olsson GM, Rungby J, Rundquist I, Brunk UT (1989) Evaluation of lysosomal stability in living cultured macrophages by cytofluorometry. Effect of silver lactate and hypotonic conditions. Virchows Arch B Cell Pathol Incl Mol Pathol 56:263–269PubMedCrossRefGoogle Scholar
  20. Persson HL, Kurz T, Eaton JW, Brunk UT (2005) Radiation-induced cell death: importance of lysosomal destabilization. Biochem J 389:877–884PubMedCrossRefGoogle Scholar
  21. Porta EA (2002) Pigments in aging: an overview. Ann NY Acad Sci 959:57–65PubMedCrossRefGoogle Scholar
  22. Porta EA, Berra A, Monserrat AJ, Benavides SH (2002) Differential lectin histochemical studies on lipofuscin (age-pigment) and on selected ceroid pigments. Arch Gerontol Geriatr 34:193–203PubMedCrossRefGoogle Scholar
  23. Rattan SI (2004) Aging, anti-aging, and hormesis. Mech Ageing Dev 125:285–289PubMedCrossRefGoogle Scholar
  24. Roberg K, Johansson U, Öllinger K (1999) Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 27:1228–1237PubMedCrossRefGoogle Scholar
  25. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 27:576–588PubMedCrossRefGoogle Scholar
  26. Stroikin Y, Dalen H, Lööf S, Terman A (2004) Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material. Eur J Cell Biol 83:583–590PubMedCrossRefGoogle Scholar
  27. Stroikin Y, Johansson U, Asplund S, Öllinger K (2007) Increased resistance of lipofuscin-loaded prematurely senescent fibroblasts to starvation-induced programmed cell death. Biogerontology 8:43–53PubMedCrossRefGoogle Scholar
  28. Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: The role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 104:277–291PubMedCrossRefGoogle Scholar
  29. Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404PubMedCrossRefGoogle Scholar
  30. Wihlmark U, Wrigstad A, Roberg K, Nilsson SE, Brunk UT (1997) Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic Biol Med 22:1229–1234PubMedCrossRefGoogle Scholar
  31. Yin L, Stearns R, Gonzalez-Flecha B (2005) Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. J Cell Biochem 94:433–445PubMedCrossRefGoogle Scholar
  32. Yu Z, Persson HL, Eaton JW, Brunk UT (2003) Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 34:1243–1245PubMedCrossRefGoogle Scholar
  33. Yuan XM, Li W, Olsson AG, Brunk UT (1997) The toxicity to macrophages of oxidized low-density lipoprotein is mediated through lysosomal damage. Atherosclerosis 133:153–161PubMedCrossRefGoogle Scholar
  34. Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 270:3778–3786PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association, Media, PA, USA 2008

Authors and Affiliations

  • Yuri Stroikin
    • 1
  • Hanna Mild
    • 1
  • Uno Johansson
    • 1
  • Karin Roberg
    • 2
  • Karin Öllinger
    • 1
  1. 1.Division of Experimental Pathology, Department of Neuroscience and Locomotion, Faculty of Health SciencesLinköping UniversityLinköpingSweden
  2. 2.Division of Oto-rhino-laryngology, Faculty of Health SciencesLinköping UniversityLinköpingSweden

Personalised recommendations