Journal of the American Aging Association

, Volume 23, Issue 4, pp 227–253 | Cite as

The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging

  • Florian Muller
Article

Abstract

Most biogerontologists agree that oxygen (and nitrogen) free radicals play a major role in the process of aging. The evidence strongly suggests that the electron transport chain, located in the inner mitochondrial membrane, is the major source of reactive oxygen species in animal cells. It has been reported that there exists an inverse correlation between the rate of superoxide/hydrogen peroxide production by mitochondria and the maximum longevity of mammalian species. However, no correlation or most frequently an inverse correlation exists between the amount of antioxidant enzymes and maximum longevity. Although overexpression of the antioxidant enzymes SOD1 and CAT (as well as SOD1 alone) have been successful at extending maximum lifespan in Drosophila, this has not been the case in mice. Several labs have overexpressed SOD1 and failed to see a positive effect on longevity. An explanation for this failure is that there is some level of superoxide damage that is not preventable by SOD, such as that initiated by the hydroperoxyl radical inside the lipid bilayer, and that accumulation of this damage is responsible for aging. I therefore suggest an alternative approach to testing the free radical theory of aging in mammals. Instead of trying to increase the amount of antioxidant enzymes, I suggest using molecular biology/transgenics to decrease the rate of superoxide production, which in the context of the free radical theory of aging would be expected to increase longevity. This paper aims to summarize what is known about the nature and mechanisms of superoxide production and what genes are involved in controlling the rate of superoxide production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckman, K.B. and Ames, B.N. Mitochondrial aging: open questions. Ann. N. Y. Acad. Sci. 854:118–127, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Beckman, K.B. and Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 78:547–581, 1998.PubMedGoogle Scholar
  3. 3.
    Beckman, K.B. and Ames, B.N. Endogenous oxidative damage of mtDNA. Mutat. Res. 424: 51–58, 1999.PubMedGoogle Scholar
  4. 4.
    Orr, W.C. and Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130, 1994.PubMedGoogle Scholar
  5. 5.
    Parkes, T.L., Ella, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P. and Boulianne, G.L. Extension of Drosophila lifespan by overexpression of human SOD1 in motomeurons. Nat. Genet. 19:171–174, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Elia, A.J., Parkes, T.L., Kirby, K., St. George-Hyslop, P., Boulianne, G.L., Phillips, J.P. and Hilliker, A.J. Expression of human FALS SOD in motorneurons of Drosophila. Free Radic. Biol. Med. 26: 1332–1338, 1999.PubMedCrossRefGoogle Scholar
  7. 7.
    Reveillaud, I., Niedzwiecki, A., Bensch, K.G. and Fleming, J.E. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress. Mol. Cell. Biol. 11:632–640, 1991.PubMedGoogle Scholar
  8. 8.
    Sun, J. and Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19:216–228, 1999.PubMedGoogle Scholar
  9. 9.
    Staveley, B.E., Phillips, J.P. and Hilliker, A.J. Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33:867–872, 1990.PubMedGoogle Scholar
  10. 10.
    Seto, N.O., Hayashi, S. and Tener, G.M. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl. Acad. Sci. U S A 87:4270–4274, 1990.PubMedGoogle Scholar
  11. 11.
    Huang, T.T., Carlson, E.J., Gillespie, A.M., Shi, Y. and Epstein, C.J. Ubiquitous overexpression of Cu,Zn superoxide dismutase does not extend life span in mice. J. Gerontol. A Biol. Sci. Med. Sci. 55:B5–9, 2000.PubMedGoogle Scholar
  12. 12.
    Sohal, R.S., Svensson, I., Sohal, B.H. and Brunk, U.T. Superoxide anion radical production in different animal species. Mech. Ageing Dev. 49:129–135, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    McFadden, S.L., Ding, D., Burkard, R.F., Jiang, H., Reaume, A.G., Flood, D.G. and Salvi, R.J. Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129,CD-1 mice. J. Comp. Neurol. 413: 101–112, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    McFadden, S.L., Ding, D., Reaume, A.G., Flood, D.G. and Salvi, R.J. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol. Aging 20:1–8, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Wilcox, H.M., Flood, D.G., Beal, M.F., Brown, R.H., Jr., Scott, R.W. and Snider, W.D. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13: 43–47, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A.S., Zastawny, T.H., Dizdaroglu, M., Goodman, S.I., Huang, T.T., Miziorko, H., Epstein, C.J. and Wallace, D.C. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. U S A 96:846–851, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsan, M.F., White, J.E., Caska, B., Epstein, C.J. and Lee, C.Y. Susceptibility of heterozygous MnSOD gene-knockout mice to oxygen toxicity. Am. J. Respir. Cell. Mol. Biol. 19:114–120, 1998.PubMedGoogle Scholar
  18. 18.
    Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H. and et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11:376–381, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    Melov, S., Schneider, J.A., Day, B.J., Hinerfeld, D., Coskun, P., Mirra, S.S., Crapo, J.D. and Wallace, D.C. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat. Genet. 18: 159–163, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Tolmasoff, J.M., Ono, T. and Cutler, R.G. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. U S A 77:2777–2781, 1980.PubMedGoogle Scholar
  21. 21.
    Perez-Campo, R., Lopez-Torres, M., Rojas, C., Cadenas, S. and Barja, G. Longevity and antioxidant enzymes, non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study. J. Comp. Physiol. [B] 163:682–689, 1994.Google Scholar
  22. 22.
    Perez-Campo, R., Lopez-Torres, M., Rojas, C., Cadenas, S. and Barja, G. A comparative study of free radicals in vertebrates—I. Antioxidant enzymes. Comp. Biochem. Physiol. [B] 105:749–755, 1993.CrossRefGoogle Scholar
  23. 23.
    Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C. and Barja, G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Physiol. [B] 168: 149–158, 1998.Google Scholar
  24. 24.
    Lopez-Torres, M., Perez-Campo, R., Rojas, C., Cadenas, S. and Barja, G. Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech. Ageing Dev. 70:177–199, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Barja, G., Cadenas, S., Rojas, C., Perez-Campo, R. and Lopez-Torres, M. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic. Res. 21:317–327, 1994.PubMedGoogle Scholar
  26. 26.
    Sohal, R.S., Svensson, I. and Brunk, U.T. Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53:209–215, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Ku, H.H., Brunk, U.T. and Sohal, R.S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15:621–627, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Rubner, M., Das Problem der Lebensdauer und seine Bezieung zu Wachstum und Ernehrung [The problem of longevity and its relation to growth and nutrition], Munich: Oldenburg 1908.Google Scholar
  29. 29.
    Pearl, R., The rate of living, London: University of London Press 1928.Google Scholar
  30. 30.
    Ku, H.H. and Sohal, R.S. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech. Ageing Dev. 72:67–76, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Sohal, R.S., Ku, H.H. and Agarwal, S. Biochemical correlates of longevity in two closely related rodent species. Biochem. Biophys. Res. Commun. 196:7–11, 1993.PubMedCrossRefGoogle Scholar
  32. 32.
    Herrero, A. and Barja, G. H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech. Ageing Dev. 103: 133–146, 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    Herrero, A. and Barja, G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech. Ageing Dev. 98:95–111, 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Herrero, A. and Barja, G. ADP-regulation of mitochondrial free radical production is different with complex I-or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J. Bioenerg. Biomembr. 29:241–249, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    Barja, G. and Herrero, A. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30: 235–243, 1998.PubMedCrossRefGoogle Scholar
  36. 36.
    Barja, G. and Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 14:312–318, 2000.PubMedGoogle Scholar
  37. 37.
    Adelman, R., Saul, R.L. and Ames, B.N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. U S A 85:2706–2708, 1988.PubMedGoogle Scholar
  38. 38.
    Nakano, M. and Gotoh, S. Accumulation of cardiac lipofuscin depends on metabolic rate of mammals. J. Gerontol. 47:B126–B129, 1992.PubMedGoogle Scholar
  39. 39.
    Sohal, R.S. and Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273:59–63, 1996.PubMedGoogle Scholar
  40. 40.
    Harman, D. Aging and disease: extending functional life span. Ann. N. Y. Acad. Sci. 786:321–336, 1996.PubMedGoogle Scholar
  41. 41.
    Yu, B.P. Aging and oxidative stress: modulation by dietary restriction. Free Radic. Biol. Med. 21: 651–668, 1996.PubMedCrossRefGoogle Scholar
  42. 42.
    Merry, B.J. Calorie restriction and age-related oxidative stress. Ann. N. Y. Acad. Sci. 908:180–198, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J. and Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74:121–133, 1994.PubMedCrossRefGoogle Scholar
  44. 44.
    Kapahi, P., Boulton, M.E. and Kirkwood, T.B. Positive correlation between mammalian life span and cellular resistance to stress. Free Radic. Biol. Med. 26:495–500, 1999.PubMedCrossRefGoogle Scholar
  45. 45.
    Ishii, N., Fujii, M., Hartman, P.S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D. and Suzuki, K. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697, 1998.PubMedCrossRefGoogle Scholar
  46. 46.
    Barja, G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31:347–366, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Barja, G. Mitochondrial free radical production and aging in mammals and birds. Ann. N. Y. Acad. Sci. 854:224–238, 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Sohal, R.S., Agarwal, A., Agarwal, S. and Orr, W.C. Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270:15671–15674, 1995.Google Scholar
  49. 49.
    Longo, V.D., Gralla, E.B. and Valentine, J.S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271:12275–12280, 1996.Google Scholar
  50. 50.
    Park, J.l., Grant, C.M., Davies, M.J. and Dawes, I.W. The cytoplasmic Cu,Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J. Biol. Chem. 273:22921–22928, 1998.Google Scholar
  51. 51.
    Lynch, R. and Fridovich, I. Penetration of the erythrocyte stroma by O2−. J. Biol. Chem. 253:4697–4699, 1978.PubMedGoogle Scholar
  52. 52.
    Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11:298–300, 1956.PubMedGoogle Scholar
  53. 53.
    Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20:145–147, 1972.PubMedGoogle Scholar
  54. 54.
    Guidot, D.M., McCord, J.M., Wright, R.M. and Repine, J.E. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J. Biol. Chem. 268:26699-26703, 1993.Google Scholar
  55. 55.
    Sohal, R.S. Mitochondria generate superoxide anion radicals and hydrogen peroxide. FASEB J. 11: 1269–1270, 1997.PubMedGoogle Scholar
  56. 56.
    Chance, B., Sies, H. and Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605, 1979.PubMedGoogle Scholar
  57. 57.
    Ernster, L., Nohl, H. and Orrenius, S. How best to ameliorate the normal increase in mitochondrial superoxide formation with advancing age. Ann. N. Y. Acad. Sci. 854:251–267, 1998.PubMedCrossRefGoogle Scholar
  58. 58.
    Babior, B.M. The production and use of reactive oxygen species by phagocytes. In: Halliwell, B. and Gutteridge, J.M.C., Free radicals in Biology and Medicine, Third Edition, p. 504, 1999.Google Scholar
  59. 59.
    de Grey, A.D. Biologists abandon Popper at their peril. BioEssays 22:206–207, 2000.PubMedCrossRefGoogle Scholar
  60. 60.
    Carlsson, L.M., Jonsson, J., Edlund, T. and Marklund, S.L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. U S A 92:6264–6268, 1995.PubMedGoogle Scholar
  61. 61.
    Matzuk, M.M., Dionne, L., Guo, Q., Kumar, T.R. and Lebovitz, R.M. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 139:4008–4011, 1998.PubMedCrossRefGoogle Scholar
  62. 62.
    Shefner, J.M., Reaume, A.G., Flood, D.G., Scott, R.W., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Upton-Rice, M. and Brown, R.H., Jr. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 53:1239–1246, 1999.PubMedGoogle Scholar
  63. 63.
    Ohlemiller, K.K., McFadden, S.L., Ding, D.L., Flood, D.G., Reaume, A.G., Hoffman, E.K., Scott, R.W., Wright, J.S., Putcha, G.V. and Salvi, R.J. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol. Neurootol. 4:237–246, 1999.PubMedCrossRefGoogle Scholar
  64. 64.
    Forman, H.J. and Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11:374–375, 1997.PubMedGoogle Scholar
  65. 65.
    Boveris, A. and Cadenas, E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54:311–314, 1975.PubMedCrossRefGoogle Scholar
  66. 66.
    Hansford, R.G., Hogue, B.A. and Mildaziene, V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29:89–95, 1997.PubMedCrossRefGoogle Scholar
  67. 67.
    Longo, V.D., Liou, L.L., Valentine, J.S. and Gralla, E.B. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys. 365:131–142, 1999.PubMedCrossRefGoogle Scholar
  68. 68.
    Dutton, P.L., Moser, C.C., Sled, V.D., Daldal, F. and Ohnishi, T. A reductant-induced oxidation mechanism for complex I. Biochim. Biophys. Acta 1364:245–257, 1998.PubMedCrossRefGoogle Scholar
  69. 69.
    The Complex I Homepage http://www.scripps.edu/mem/biochem/CI/index.html. 2000. The Scripps Research Institute.
  70. 70.
    Ackrell, B.A. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett. 466:1–5, 2000.PubMedCrossRefGoogle Scholar
  71. 71.
    Crofts, A.R. and Wang, Z. How rapid are the internal reactions of the ubiquinol: cytochrome c 2 oxidoreductase? Photosynth. Res. 22:69–87, 1989.CrossRefGoogle Scholar
  72. 72.
    Michel, H. Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping— a discussion. Biochemistry 38:15129–15140, 1999.Google Scholar
  73. 73.
    Proshlyakov, D.A., Pressler, M.A. and Babcock, G.T. Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc. Natl. Acad. Sci. U S A 95:8020–8025, 1998.PubMedCrossRefGoogle Scholar
  74. 74.
    Cramer, W.A. and Knaff, D.B., Energy Transduction in Biological Membranes., Springer-Verlag: New York. p. 35–74, 1989.Google Scholar
  75. 75.
    Wood, P.M. The potential diagram for oxygen at pH 7. Biochem. J. 253:287–289, 1988.PubMedGoogle Scholar
  76. 76.
    Petlicki, J. and Van de Ven, T.G.M. The equlibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solutions in contact with oxygen. Journal of the Chemical Society Faraday Transactions 94:2763–2767, 1998.CrossRefGoogle Scholar
  77. 77.
    Cammack, R., Barber, M.J. and Bray, R.C. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase. Biochem. J. 157:469–478, 1976.PubMedGoogle Scholar
  78. 78.
    Buettner, G.R. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300:535–543, 1993.PubMedCrossRefGoogle Scholar
  79. 79.
    Isogai, Y., lizuka, T., Makino, R., Iyanagi, T. and Orii, Y. Superoxide-producing cytochrome b. Enzymatic and electron paramagnetic resonance properties of cytochrome b558 purified from neutrophils. J. Biol. Chem. 268: 4025–4031, 1993.PubMedGoogle Scholar
  80. 80.
    Halliwell, B. and Gutteridge, J.M.C., Free radicals in Biology and Medicine. Third ed: Oxford University Press 1999.Google Scholar
  81. 81.
    Cadenas, E., Boveris, A., Ragan, C.I. and Stoppani, A.O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180:248–257, 1977.PubMedCrossRefGoogle Scholar
  82. 82.
    Turrens, J.F. and Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427, 1980.PubMedGoogle Scholar
  83. 83.
    Loschen, G. and Azzi, A. On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria. Recent Adv. Stud. Cardiac. Struct. Metab. 7:3–12, 1976.Google Scholar
  84. 84.
    Hinkle, P.C., Butow, R.A., Racker, E. and Chance, B. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J. Biol. Chem. 242:5169–5473, 1967.PubMedGoogle Scholar
  85. 85.
    Imlay, J.A. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coil J. Biol. Chem. 270:19767–19777, 1995.Google Scholar
  86. 86.
    Forman, J.H. and Kennedy, J. Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250:4322–4326, 1975.PubMedGoogle Scholar
  87. 87.
    Bolter, C.J. and Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 278:65–72, 1990.PubMedCrossRefGoogle Scholar
  88. 88.
    Boveris, A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 78:67–82, 1977.PubMedGoogle Scholar
  89. 89.
    Guillivi, C., Boveris, A. and Cadenas, E., The Steady state concentration of Oxygen free radicals in Mitochondria, in Reactive Oxygen species in Biological systems, Daniel L. Gilbert, C.A.C., Editor., Kluwer Academic/ Plenum Publishers: New York. pp. 77–102, 1999.Google Scholar
  90. 90.
    Nohl, H. Is redox-cycling ubiquinone involved in mitochondrial oxygen activation? Free Radic. Res. Commun. 8:307–315, 1990.PubMedGoogle Scholar
  91. 91.
    Nohl, H., Gille, L., Schonheit, K. and Liu, Y. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free. Radic. Biol. Med. 20:207–213, 1996.PubMedCrossRefGoogle Scholar
  92. 92.
    Nohl, H. and Jordan, W. The mitochondrial site of superoxide formation. Biochem. Biophys. Res. Commun. 138:533–539, 1986.PubMedCrossRefGoogle Scholar
  93. 93.
    Nohl, H. and Stolze, K. Ubisemiquinones of the mitochondrial respiratory chain do not interact with molecular oxygen. Free Radic. Res. Commun. 16:409–419, 1992.PubMedGoogle Scholar
  94. 94.
    Tyler, D., The Mitochondrion in health and disease. Vol. pp. 172–173, New York: VCH 1992.Google Scholar
  95. 95.
    Williams, J.N. A Comparative study of cytochrome ratios in mitochondria of the rat, chicken and guinea pig. Biochim. Biophys. Acta 162:175–181, 1968.PubMedCrossRefGoogle Scholar
  96. 96.
    Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T.A., Ramaswamy, S. and Jap, B.K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71, 1998.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang, Z., Huang, L., Shulmeister, V.M., Chi, Y.I., Kim, K.K., Hung, L.W., Crofts, A.R., Berry, E.A. and Kim, S.H. Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684, 1998.PubMedCrossRefGoogle Scholar
  98. 98.
    Bowyer, J.R. and Ohnishi, T. EPR spectroscopy in the study of ubisemiquinones in redox chains. Coenzyme Q (G. Lenaz ed.) pp 409–432, 1985.Google Scholar
  99. 99.
    Kraut, J. How do enzymes work? Science 242:533–540, 1988.PubMedGoogle Scholar
  100. 100.
    The bc1-Complex http://arc-genl.life.uiuc.edu/Bioph354/bc-complex_summary.html. 1996. University of Illinois at Urbana-Champaign.
  101. 101.
    Berry, E.A., Huang, L.S., Zhang, Z. and Kim, S.H. Structure of the avian mitochondrial cytochrome bc1 complex. J. Bioenerg. Biomembr. 31:177–190, 1999.PubMedCrossRefGoogle Scholar
  102. 102.
    Bergström, J. The EPR spectrum and orientation of cytochrome b-563 in the chloroplast thylakoid membrane. FEBS Lett. 183:87–90, 1985.CrossRefGoogle Scholar
  103. 103.
    Berry, E.A. and Trumpower, B.L., Pathways of Electrons and Protons Through the Cytochrome bc 1 Complex of the Mitochondrial Respiratory Chain, in Coenzyme Q, Lenaz, G., Editor., John Wiley & Sons Ltd. pp. 365–389, 1985.Google Scholar
  104. 104.
    Crofts, A.R., Hong, S., Ugulava, N., Barquera, B., Gennis, R., Guergova-Kuras, M. and Berry, E.A. Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Proc. Natl. Acad. Sci. U S A 96: 10021–10026, 1999.Google Scholar
  105. 105.
    Hong, S., Ugulava, N., Guergova-Kuras, M. and Crofts, A.R. The energy landscape for ubihydroquinone oxidation at the Q(o) site of the bc(1) complex in Rhodobacter sphaeroides. J. Biol. Chem. 274:33931–33944, 1999.Google Scholar
  106. 106.
    Ksenzenko, M., Konstantinov, A.A., Khomutov, G.B., Tikhonov, A.N. and Ruuge, E.K. Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Lett. 155:19–24, 1983.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhang, L., Yu, L. and Yu, C.A. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273:33972–33976, 1998.Google Scholar
  108. 108.
    Turrens, J.F., Alexandre, A. and Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:408–414, 1985.PubMedCrossRefGoogle Scholar
  109. 109.
    Longo, V.D., Ellerby, L.M., Bredesen, D.E., Valentine, J.S. and Gralla, E.B. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell. Biol. 137: 1581–1588, 1997.PubMedCrossRefGoogle Scholar
  110. 110.
    T’Sai A, L. and Palmer, G. Potentiometric studies on yeast complex III. Biochim. Biophys. Acta 722: 349–363, 1983.PubMedCrossRefGoogle Scholar
  111. 111.
    Crofts, A.R., Barquera, B., Gennis, R.B., Kuras, R., Guergova-Kuras, M. and Berry, E.A. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38:15807–15826, 1999.Google Scholar
  112. 112.
    Ding, H., Moser, C.C., Robertson, D.E., Tokito, M.K., Daldal, F. and Dutton, P.L. Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex. Biochemistry 34: 15979–15996, 1995.Google Scholar
  113. 113.
    Che, Y., Tsushima, M., Matsumoto, F., Okajima, T., Tokuda, K. and Ohsaka, T. Water-induced Disproportionation of Superoxide Ion in Aprotic Solvents. J. Phys. Chem. 100:20134–20137, 1996.Google Scholar
  114. 114.
    Sawyer, D.T., Oxygen: Inorganic Chemistry, in Encyclopedia of Inorganic Chemistry, King, R.B., Ed., John Wiley & Sons: Chichester. pp. 2947–2988, 1994.Google Scholar
  115. 115.
    Bielski, B.H.J. Reactivity of \(HO_2 ^. /O\mathop \cdot \limits_2^ - \) Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 14: 1041–1091, 1985.Google Scholar
  116. 116.
    Takahashi, M.A. and Asada, K. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226:558–566, 1983.PubMedCrossRefGoogle Scholar
  117. 117.
    Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17:3–8, 1997.PubMedCrossRefGoogle Scholar
  118. 118.
    Ernster, L., Hoberman, H.D., Howard, R.L., King, T.E., Lee, C.P., Mackler, B. and Sottocasa, G. Stereospecificity of certain soluble and particulate preparations of mitochondrial reduced nicotinamide-adenine dinucleotide dehydrogenase from beef heart. Nature 207:940–941, 1965.PubMedGoogle Scholar
  119. 119.
    Parsons, D.F. Recent advances correlating structure and function in mitochondria. Int. Rev. Exp. Pathol. 4:1–54, 1965.PubMedGoogle Scholar
  120. 120.
    Lass, A. and Sohal, R.S. Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J. 14:87–94, 2000.PubMedGoogle Scholar
  121. 121.
    Fukuzawa, K. and Gebicki, J.M. Oxidation of alpha-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Arch. Biochem. Biophys. 226:242–251, 1983.PubMedCrossRefGoogle Scholar
  122. 122.
    Hoch, F.L. Cardiolipins and mitochondrial proton-selective leakage. J. Bioenerg. Biomembr. 30: 511–532, 1998.PubMedCrossRefGoogle Scholar
  123. 123.
    Korshunov, S.S., Skulachev, V.P. and Starkov, A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416:15–18, 1997.PubMedCrossRefGoogle Scholar
  124. 124.
    Korshunov, S.S., Korkina, O.V., Ruuge, E.K., Skulachev, V.P. and Starkov, A.A. Fatty acids as natural uncouplers preventing generation of \(O\mathop \cdot \limits_2^ - \) and H2O2 by mitochondria in the resting state. FEBS Lett. 435:215–228, 1998.PubMedCrossRefGoogle Scholar
  125. 125.
    Blasig, I.E., Dickens, B.F., Weglicki, W.B. and Kramer, J.H. Uncoupling of mitochondrial oxidative phosphorylation alters lipid peroxidation-derived free radical production but not recovery of postischemic rat hearts and post-hypoxic endothelial cells. Mol. Cell. Biochem. 160–161:167–177, 1996.PubMedCrossRefGoogle Scholar
  126. 126.
    Skulachev, V.P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29:169–202, 1996.PubMedCrossRefGoogle Scholar
  127. 127.
    Demin, O.V., Kholodenko, B.N. and Skulachev, V.P. A model of \(O\mathop \cdot \limits_2^ - \) generation in the complex III of the electron transport chain. Mol. Cell. Biochem. 184:21–33, 1998.PubMedCrossRefGoogle Scholar
  128. 128.
    Pitkanen, S. and Robinson, B.H. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J. Clin. Invest. 98:345–351, 1996.PubMedCrossRefGoogle Scholar
  129. 129.
    Tanaka, M., Gong, J.S., Zhang, J., Yoneda, M. and Yagi, K. Mitochondrial genotype associated with longevity. Lancet 351:185–186, 1998.PubMedCrossRefGoogle Scholar
  130. 130.
    Takeshige, K. and Minakami, S. NADH-and NADPH-dependent formation ol superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180:129–135, 1979.PubMedGoogle Scholar
  131. 131.
    Herrero, A. and Barja, G. Localisation of the site of oxygen radical generation inside Complex I of heart and non-synaptic brain mammalian mitochondria. J. Bioenerg. Biomembr.: In press, 2000.Google Scholar
  132. 132.
    Grigorieff, N. Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr. Opin. Struct. Biol. 9:476–483, 1999.PubMedCrossRefGoogle Scholar
  133. 133.
    Grigorieff, N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J. Mol. Biol. 277:1033–1046, 1998.PubMedCrossRefGoogle Scholar
  134. 134.
    Guenebaut, V., Schlitt, A., Weiss, H., Leonard, K. and Friedrich, T. Consistent structure between bacterial and mitochondriai NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 276:105–112, 1998.PubMedCrossRefGoogle Scholar
  135. 135.
    Ohnishi, T. Iron-sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364:186–206, 1998.PubMedCrossRefGoogle Scholar
  136. 136.
    Ohnishi, T., Sled, V.D., Yano, T., Yagi, T., Burbaev, D.S. and Vinogradov, A.D. Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. Biochim. Biophys. Acta 1365:301–308, 1998.PubMedCrossRefGoogle Scholar
  137. 137.
    van Belzen, R., Kotlyar, A.B., Moon, N., Dunham, W.R. and Albracht, S.P. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles. Biochemistry 36:886–893, 1997.PubMedCrossRefGoogle Scholar
  138. 138.
    Brandt, U. Proton-translocation by membrane-bound NADPH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim. Biophys. Acta 1318:79–91, 1997.PubMedCrossRefGoogle Scholar
  139. 139.
    Degli Esposti, M., Ghelli, A., Crimi, M., Estornell, E., Fato, R. and Lenaz, G. Complex I and complex III of mitochondria have common inhibitors acting as ubiquinone antagonists. Biochem. Biophys. Res. Commun. 190:1090–1096, 1993.PubMedCrossRefGoogle Scholar
  140. 140.
    Carelli, V., Ghelli, A., Bucchi, L., Montagna, P., De Negri, A., Leuzzi, V., Carducci, C., Lenaz, G., Lugaresi, E. and Degli Esposti, M. Biochemical features of mtDNA 14484 (ND6/M64V) point mutation associated with Leber’s hereditary optic neuropathy. Ann. Neurol. 45:320–328, 1999.PubMedCrossRefGoogle Scholar
  141. 141.
    Fisher, N. and Rich, P.R. A Motif for Quinone Binding Sites in Respiratory and Photosynthetic Systems. J. Mol. Biol. 296:1153–1162, 2000.PubMedCrossRefGoogle Scholar
  142. 142.
    Boveris, A., Cadenas, E. and Stoppani, A.O. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156:435–444, 1976.PubMedGoogle Scholar
  143. 143.
    Messner, K.R. and Imlay, J.A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coll. J. Biol. Chem. 274: 10119–10128, 1999.Google Scholar
  144. 144.
    Tormo, J.R., Gallardo, T., Aragon, R., Cortes, D. and Estornell, E. Specific interactions of monotetrahydrofuranic annonaceous acetogenins as inhibitors of mitochondrial complex I. Chem. Biol. Interact. 122:171–183, 1999.PubMedCrossRefGoogle Scholar
  145. 145.
    Tormo, J.R., Gonzalez, M.C., Cortes, D. and Estornell, E. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins. Arch. Biochem. Biophys. 369:119–126, 1999.PubMedCrossRefGoogle Scholar
  146. 146.
    Barja, G., Cadenas, S., Rojas, C., Lopez-Torres, M. and Perez-Campo, R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals. Comp. Biochem. Physiol. Biochem. Mol. Biol. 108:501–512, 1994.PubMedCrossRefGoogle Scholar
  147. 147.
    de Grey, A.D.N.J. Non-correlation between maximum life span and antioxidant enzyme levels among homotherms: implications for retarding human aging. J. Antiaging Med. 3:25–36, 2000.Google Scholar
  148. 148.
    Mockett, R.J., Sohal, R.S. and Orr, W.C. Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 13:1733–1742, 1999.PubMedGoogle Scholar
  149. 149.
    Mockett, R.J., Orr, W.C., Rahmandar, J.J., Benes, J.J., Radyuk, S.N., Klichko, V.I. and Sohal, R.S. Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 371:260–269, 1999.PubMedCrossRefGoogle Scholar
  150. 150.
    Srere, P.A. The Structure of the mitochondrial inner membrane-matrix compartement. Trends. Biochem. Sci. 7:375–378, 1982.CrossRefGoogle Scholar
  151. 151.
    de Grey, A.D.N.J. A proposed refinement of the mitochondrial free radical theory of aging. BioEssays 19:161–166, 1997.PubMedCrossRefGoogle Scholar
  152. 152.
    de Grey, A.D.N.J. A mechanism proposed to explain the rise in oxidative stress during aging. J. Antiaging Med. 1:53–66, 1998.Google Scholar
  153. 153.
    Voet, D. and Voet, J.G., Biochemistry. First Edition Chapter 18: Transport through membranes, New York: John Wiley & Sons 1990.Google Scholar
  154. 154.
    Antunes, F., Salvador, A., Marinho, H.S., Alves, R. and Pinto, R.E. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic. Biol. Med. 21:917–943, 1996.PubMedCrossRefGoogle Scholar
  155. 155.
    Takahashi, M. and Asada, K. A flash-photometric method for determination of reactivity of superoxide: application to superoxide dismutase assay. J. Biochem. (Tokyo) 91:889–896, 1982.Google Scholar
  156. 156.
    Aikens, J. and Dix, T.A. Perhydroxyl radical (HOO) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem. 266:15091–15098, 1991.Google Scholar
  157. 157.
    Thomas, M.J., Sutherland, M.W., Arudi, R.L. and Bielski, B.H. Studies of the reactivity of \(HO_2 ^. /O\mathop \cdot \limits_2^ - \) with unsaturated hydroperoxides in ethanolic solutions. Arch. Biochem. Biophys. 233:772–775, 1984.PubMedCrossRefGoogle Scholar
  158. 158.
    Bielski, B.H., Arudi, R.L. and Sutherland, M.W. A study of the reactivity of \(HO_2 ^. /O\mathop \cdot \limits_2^ - \) with unsaturated fatty acids. J. Biol. Chem. 258:4759–4761, 1983.PubMedGoogle Scholar
  159. 159.
    Liochev, S.I. and Fridovich, I. The relative importance of HO and ONOO-in mediating the toxicity of \(O\mathop \cdot \limits_2^ - \). Free Radic. Biol. Med. 26:777–778, 1999.PubMedCrossRefGoogle Scholar
  160. 160.
    Kissner, R., Nauser, T., Bugnon, P., Lye, P.G. and Koppenol, W.H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10:1285–1292, 1997.PubMedCrossRefGoogle Scholar
  161. 161.
    Beckmann, J.D., Ljungdahl, P.O. and Trumpower, B.L. Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. I. Construction of a RIP1 deletion strain and isolation of temperature-sensitive mutants. J. Biol. Chem. 264:3713–3722, 1989.PubMedGoogle Scholar
  162. 162.
    Lemesle-Meunier, D., Brivet-Chevillotte, P., di Rago, J.P., Slonimski, P.P., Bruel, C., Tron, T. and Forget, N. Cytochrome b-deficient mutants of the ubiquinol-cytochrome c oxidoreductase in Saccharomyces cerevisiae. Consequence for the functional and structural characteristics of the complex. J. Biol. Chem. 268: 15626–15632, 1993.Google Scholar
  163. 163.
    VidaI-Puig, A.J., Grujic, D., Zhang, C.Y., Hagen, T., Boss, O., Ido, Y., Szczepanik, A., Wade, J., Mootha, V., Cortright, R., Muoio, D.M. and Lowell, B.B. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275:16258–16266, 2000.Google Scholar
  164. 164.
    Esposito, L.A., Melov, S., Panov, A., Cottrell, B.A. and Wallace, D.C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl. Acad. Sci. U S A 96:4820–4825, 1999.PubMedCrossRefGoogle Scholar
  165. 165.
    Graham, B.H., Waymire, K.G., Cottrell, B., Trounce, I.A., MacGregor, G.R. and Wallace, D.C. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet. 16:226–234, 1997.PubMedCrossRefGoogle Scholar
  166. 166.
    Taylor, R.W., Birch-Machin, M.A., Bartlett, K., Lowerson, S.A. and Turnbull, D.M. The control of mitochondrial oxidations by complex III in rat muscle and liver mitochondria. Implications for our understanding of mitochondrial cytopathies in man. J. Biol. Chem. 269:3523–3528, 1994.PubMedGoogle Scholar
  167. 167.
    Boveds, A. and Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134:707–716, 1973.Google Scholar
  168. 168.
    Baret, P., Fouarge, A., Bullens, P. and Lints, F.A. Life-span of Drosophila melanogaster in highly oxygenated atmospheres. Mech. Ageing Dev. 76:25–31, 1994.PubMedCrossRefGoogle Scholar
  169. 169.
    Honda, S. and Matsuo, M. Lifespan shortening of the nematode Caenorhabditis elegans under higher concentrations of oxygen. Mech. Ageing Dev. 63:235–246, 1992.PubMedCrossRefGoogle Scholar
  170. 170.
    Honda, S., Ishii, N., Suzuki, K. and Matsuo, M. Oxygen-dependent perturbation of life span and aging rate in the nematode. J. Gerontol. 48:B57–61, 1993.PubMedGoogle Scholar
  171. 171.
    Miquel, J., Lundgren, P.R. and Bensch, K.G. Effects of oxygen-nitrogen (1:1) at 760 Torr on the life span and fine structure of Drosophila melanogaster. Mech. Ageing. Dev. 4:41–57, 1975.PubMedCrossRefGoogle Scholar
  172. 172.
    Strehler, B.L., Time, Cells, and Aging. 2nd Edition ed, New York: Academic Press, 1977.Google Scholar
  173. 173.
    Holmes, D.J. and Austad, S.N. Birds as animal models for the comparative biology of aging: a prospectus. J. Gerontol. A Biol. Sci. Med. Sci. 50:B59–66, 1995.PubMedGoogle Scholar
  174. 174.
    Austad, S.N. and Fischer, K.E. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46:B47–53, 1991.PubMedGoogle Scholar
  175. 175.
    Ooka, H. and Shinkai, T. Effects of chronic hyperthyroidism on the lifespan of the rat. Mech. Ageing Dev. 33:275–282, 1986.PubMedCrossRefGoogle Scholar
  176. 176.
    Hunter, W.S., Croson, W.B., Bartke, A., Gentry, M.V. and Meliska, C.J. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 67:433–437, 1999.PubMedCrossRefGoogle Scholar
  177. 177.
    Bartke, A., Brown-Borg, H.M., Bode, A.M., Carlson, J., Hunter, W.S. and Bronson, R.T. Does growth hormone prevent or accelerate aging? Exp. Gerontol. 33:675–687, 1998.PubMedCrossRefGoogle Scholar
  178. 178.
    Sohal, R.S. and Sohal, B.H. Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing. Dev. 57:187–202, 1991.PubMedCrossRefGoogle Scholar
  179. 179.
    Nishiki, K., Erecinska, M., Wilson, D.F. and Cooper, S. Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid, and hyperthyroid rats. Am. J. Physiol. 235:C212–219, 1978.PubMedGoogle Scholar
  180. 180.
    Ljungdahl, P.O., Pennoyer, J.D., Robertson, D.E. and Trumpower, B.L. Purification of highly active cytochrome bc1 complexes from phylogenetically diverse species by a single chromatographic procedure. Biochim. Biophys. Acta 891:227–241, 1987.PubMedCrossRefGoogle Scholar
  181. 181.
    Braidot, E., Petrussa, E., Vianello, A. and Macri, F. Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates. FEBS Lett. 451:347–350, 1999.PubMedCrossRefGoogle Scholar
  182. 182.
    Maxwell, D.P., Wang, Y. and McIntosh, L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U S A 96:8271–8276, 1999.PubMedCrossRefGoogle Scholar
  183. 183.
    Yukioka, H., Inagaki, S., Tanaka, R., Katoh, K., Miki, N., Mizutani, A. and Masuko, M. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. Biochim. Biophys. Acta 1442:161–169, 1998.PubMedGoogle Scholar
  184. 184.
    Popov, V.N., Simonian, R.A., Skulachev, V.P. and Starkov, A.A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 415:87–90, 1997.PubMedCrossRefGoogle Scholar
  185. 185.
    Clapham, J.C., Arch, J.R., Chapman, H., Haynes, A., Lister, C., Moore, G.B., Piercy, V., Carter, S.A., Lehner, I., Smith, S.A., Beeley, L.J., Godden, R.J., Herrity, N., Skehel, M., Changani, K.K., Hockings, P.D., Reid, D.G., Squires, S.M., Hatcher, J., Trail, B., Latcham, J., Rastan, S., Harper, A.J., Cadenas, S., Buckingham, J.A., Brand, M.D. and Abuin, A. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406:415–418, 2000.PubMedCrossRefGoogle Scholar
  186. 186.
    Trumpower, B.L. The Protonmotive Q Cycle. J Biol Chem 265:11409–11412 1990Google Scholar
  187. 187.
    Dutton, P.L. and Wilson, D.F. Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim. Biophys. Acta 346:165–212, 1974.PubMedGoogle Scholar
  188. 188.
    Wilson, D.F. and Dutton, P.L. The oxidation-reduction potentials of cytochromes a and a3 in intact rat liver mitochondria. Arch. Biochem. Biophys. 136:583–585, 1970.PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association, Inc. 2000

Authors and Affiliations

  • Florian Muller
    • 1
  1. 1.Laboratory of David M. Kramer, Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations