Journal of the American Aging Association

, Volume 23, Issue 3, pp 147–161 | Cite as

Alzheimer’s disease: A hypothesis on pathogenesis

  • Denham Harman
Article

Abstract

Alzheimer’s disease (AD) is the major cause of dementia. It is a systemic disorder whose major manifestations are in the brain. AD cases can be categorized into two groups on the basis of the age of onset-before or after about age 60. The majority of cases, 90–95 percent, are in the late onset category. Early onset cases are largely, if not all, familial (FAD). These are caused by mutations in the genes for the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). In contrast late onset cases are mainly sporadic.

The disorder is characterized by intraneuronal fibrillary tangles, plaques, and cell loss. The brain lesions in both early and late-onset AD are the same, and in the same distribution pattern, as those seen in individuals with Down’s syndrome (DS) and in smaller numbers in normal older individuals.

Extensive studies of AD have yet to result in a generally accepted hypothesis on the pathogenesis of the disorder. Major emphasis has been placed on the role of amyloid, the neurotoxin formed by the action of free radicals on preamyloid.

The observation that AD lesions are frequently present in normal older individuals prompted the hypothesis that AD is the result of faster than normal aging of the neurons associated with it. This hypothesis provides plausible explanations for FAD and AD.

FAD is associated with mutations in APP, PS1, and PS2. These substances, along with their normal counterparts, undergo proteolytic processing in the endoplasmic reticulum (ER). The mutated compounds, aside from increasing the ratio of βA42 to βA40, may down-regulate the calcium buffering activity of the ER in a manner akin to one or more of the many compounds known to do so. Decreases in the ER calcium pool would cause compensatory increases in other calcium pools, particularly in mitochondria. Increases in mitochondrial calcium levels are associated with enhanced formation of superoxide radical formation, and hence of the rate of aging.

SAD may be caused by nuclear and/or mitochondrial DNA mutations beginning early in life that enhance mitochondrial superoxide radical formation in the neurons associated with the disorder.

The above explanations for FAD and AD are suggestive of measures to prevent and for treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katzman, R.: Alzheimer’s disease. New. Eng. J. Med., 314: 964–973, 1986.PubMedCrossRefGoogle Scholar
  2. 2.
    Goedert, M., Strittmatter, J., and Roses, A. D.: Risky apolipoprotein in brain. Nature, 372: 45–46, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Nalbantoglu, J., Lacoste-Royal, G., and Gauvreau, D.: Genetic factors in Alzheimer’s disease. J. Amer. Geriatr. Soc., 38: 564–568, 1990.Google Scholar
  4. 4.
    Breitner, J. C. S., Murphy, E. A., Silverman, J. M., Mohs, R. C., and Davis, K. L.: Age-dependent expression of familial risk in Alzheimer’s disease. Amer. J. Epidemiology, 128: 536–548, 1988.Google Scholar
  5. 5.
    Schellenberg, G. D., Birdd, T. D., Wijsman, E. M., Orr, H. T., Anderson, L., Nemens, E., White, J. A., Bonnycastle, L., Weber, J.L., Alonso, M. E., Potter, H., Heston, L. L., and Martin, G. M.: Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science, 258: 668–671, 1992.PubMedGoogle Scholar
  6. 6.
    Levy-Lahad, E. W., Wijsman, E. M., Nemens, E., Anderson, L., Goddard, K. A. B., Weber, J. L., Bird, T. D., and Schellenberg, G. D.: A familial Alzheimer’s disease locus on chromosome 1. Science, 269: 970–973, 1995.PubMedGoogle Scholar
  7. 7.
    Goate, A., Chartier-Harlin, M.-C., and Mullah, M., et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349: 704–706, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Katzman, R., and Saitoh, T.: Advances in Alzheimer’s disease. FASEB J., 5: 278–286, 1991.PubMedGoogle Scholar
  9. 9.
    Baker, A. C., Ko, L.-W., and Blass, J. P.: Systemic manifestations of Alzheimer’s disease. Age, 11: 60–65, 1988.Google Scholar
  10. 10.
    Katzman, R., and Jackson, J. E.: Alzheimer disease: basic and clinical advances. J. Amer. Geriatrics Soc., 39: 516–525, 1991.Google Scholar
  11. 11.
    McKee, A. C., Kosik, K. S., and Kowall, N. W.: Neuritic pathology and dementia in Alzheimer’s disease. Ann. Neurol., 30: 156–165, 1991.PubMedCrossRefGoogle Scholar
  12. 12.
    Terry, R. D.: Ultrastructural alterations in senile dementia, in Alzheimer’s Disease: Senile Dementia and Related Disorders, edited by Katzman, R., Terry, R. D., and Bick, K. L., New York, Raven Press, 1978, pp. 375–382.Google Scholar
  13. 13.
    Terry, R. D., Masliak, E., and Hansen, L A.: Structural basis of the cognitive alterations in Alzheimer disease, edited by Terry, R. D., Katzman, R., and Bick, K. D., New York, Raven Press, pp. 179–196.Google Scholar
  14. 14.
    Harman, D.: Free radical theory of aging: Alzheimer’s disease pathogenesis. Age, 18: 97–119, 1995CrossRefGoogle Scholar
  15. 15.
    Folstein, M. F., and Bylsma, F. W.: Noncognitive symptoms of Alzheimer’s disease, in Alzheimer Disease, edited by Terry, R. D., Katzmann, R., and Bick, K. L., New York, Raven Press, 1994, pp. 27–40.Google Scholar
  16. 16.
    Reisberg, B.: Clinical presentation, diagnosis, and symptomatology of age-associated cognitive decline and Alzheimer’s disease, in Alzheimer’s Disease, edited by Reisberg, B., New York, The Free Press, 1983, pp. 173–187.Google Scholar
  17. 17.
    Berg, L., and Morris, J. C., Diagnosis, in Alzheimer’s Disease, edited by Terry, R. D., Katzman, R., and Bick, K. L., New York, Raven Press, pp. 9–25.Google Scholar
  18. 18.
    Mann, D. M. A., and Esiri, M. M.: The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci., 89: 169–179, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Crystal, H., Dickson, D., and Fuld, P., et. al.: Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurol., 38: 1682–1687, 1988.Google Scholar
  20. 20.
    Arriagada, P. V., Marzloff, K., and Hyman, B. T.: Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurol., 42: 1681–1688, 1992.Google Scholar
  21. 21.
    Peterson, C., and Goldman, J. E.: Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer’s donors. Proc. Natl. Acad. Sci., USA, 83: 2758–2762, 1986.PubMedGoogle Scholar
  22. 22.
    Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R.J.: Evidence for a membrane defect in Alzheimer’s disease brain. Proc. Natl. Acad. Sci., USA, 89: 1671–1675, 1992.PubMedGoogle Scholar
  23. 23.
    Bossman, G. J. C. G. M., Bartholomeus, I. G. P., and de Grip, W.J.: Alzheimer’s disease and cellular aging: membrane-related events as clues to primary mechanisms. Gerontol., 37: 95–112, 1991.CrossRefGoogle Scholar
  24. 24.
    Parker, Jr., W. D., Filley, C. M., and Parks, J. K.: Cytochrome oxidase deficiency in Alzheimer’s disease. Neurol., 40: 1302–1303, 1990.Google Scholar
  25. 25.
    Hafner, H.: Epidemiology of Alzheimer’s disease, in Alzheimer’s Disease: Epidemiology, Neuropathology, Neurochemistry, and Clinics, edited by Maurer, K., Riederer, P., and Beckmann, H., New York, Springer-Verlag, 1990, pp. 23–39.Google Scholar
  26. 26.
    Editorial: Amyloid and Alzheimer’s disease. Nature Med., 4: 745, 1998.Google Scholar
  27. 27.
    Gasparini, L, Racchi, M., Binetti, G., Trabucchi, M., Solerte, S. B., Alkon, D., Etcheberrigaray, R., Gibson, G., Blass, J., Paoletti, R. and Govoni, S.: Peripheral markers in testing pathophysiological hypotheses and diagnosing Alzheimer’s disease. FASEB J., 12: 17–34, 1998.PubMedGoogle Scholar
  28. 28.
    Selkoe, D. J.: Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399(Suppl.): A23–A31, 1999.PubMedGoogle Scholar
  29. 29.
    Yankner, B. A.: Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron, 16: 921–932, 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Hardy, J. A. and Higgins, G. A.: Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256: 134–184, 1992.Google Scholar
  31. 31.
    Yankner, B. A.: New clues to Alzheimer’s disease: unraveling the roles of amyloid and tau. Nature Med., 2:850–852, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Selkoe, D. J.: Alzheimer’s disease: genotypes, phenotypes, and treatments. Science, 275: 630–631, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Dickson, D. W.: The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol., 56: 321–338, 1997.PubMedGoogle Scholar
  34. 34.
    Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K.: Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem., 267: 18210–18217, 1992.Google Scholar
  35. 35.
    Terry, R. D.: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exper. Neurol., 55: 1023–1025, 1996.Google Scholar
  36. 36.
    Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuth, K., Selkoe, D. J., and Haass, C.: The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem., 273:3205–3211, 1998.PubMedCrossRefGoogle Scholar
  37. 37.
    De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., and Van Leuven, F.: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 391:387–390, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T. and Selkoe, D. J.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature, 398: 513–517, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Murphy, M. P., Hickman, L. J., Eckman, C. B., Uljon, S. N., Wang, R., and Golde, T. E.: γ-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid β peptides of varying length. J. Biol. Chem., 274: 11914–11923, 1999.Google Scholar
  40. 40.
    Annaert, W. and De Strooper, B.: Presenilins: molecular switches between proteolysis and signal transduction. TINS, 22: 439–443, 1999.PubMedGoogle Scholar
  41. 41.
    Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., St George-Hyslop, P., Cordell, B., Fraser, P., and De Strooper, B.: Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J.Cell Biol., 147: 277–294, 1999.PubMedCrossRefGoogle Scholar
  42. 42.
    Kimberly, W. T., Xia, W., Rahmati, T., Wolfe, M. S., and Selkoe, D. J.: The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J. Biol. Chem., 275: 3173–3178, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Querfurth, H. W. and Selkoe, D. J.: Calcium ionophore increases amyloid β peptide production by cultured cells. Biochem., 33: 4550–4561, 1994.CrossRefGoogle Scholar
  44. 44.
    Blanchard, B. J., Konopka, G., Russell, M., and Ingram, V. M.: Mechanism and prevention of neurotoxicity caused by β-amyloid peptides: relation to Alzheimer’s disease. Brain Res., 776: 40–50, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Sheehan, J. P., Swerdlow, R. H., Miller, S. W., Davis, R. E., Parks, J. K., Parker, W. D., and Tuttle, J. B.: Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci., 17: 4612–4622, 1997.PubMedGoogle Scholar
  46. 46.
    Guo, Q., Fu, W., Holtsberg, F. W., Steiner, S. M., and Mattson, M. P.: Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. J. Neurosci., 56: 457–470, 1999.CrossRefGoogle Scholar
  47. 47.
    Mattson, M. P., Zhu, H., Yu, J., Kindy, M. S.: Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci., 20: 1358–1364, 2000.PubMedGoogle Scholar
  48. 48.
    McGeer, P. L. and McGeer, E. D.: The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res., 21: 195–218, 1995.CrossRefGoogle Scholar
  49. 49.
    Mrak, R. E, Sheng, J. G., and Griffin, W. S. T.: Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol.: 26: 816–823, 1995.PubMedCrossRefGoogle Scholar
  50. 50.
    Eikelenboom, P. and Veerhuis, R.: The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging., 17: 673–680, 1996.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong, M-L., Bongiorno, P. B., Rettori, V., McCann, S. M., and Licinio, J.: Interleukin (IL) 1β, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proc. Natl. Acad. Sci. USA, 94: 227–232, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Eikelenboom, P., Rozemuller, J. M., and van Muisinkel, F. L.: Inflammation and Alzheimer’s disease: relationships between pathogenic mechanisms and clinical expression. Exper. Neurol., 154: 89–98, 1998.CrossRefGoogle Scholar
  53. 53.
    Floyd, R. A.: Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Rad. Bio. Med., 26: 1346–1355, 1999.CrossRefGoogle Scholar
  54. 54.
    Wood, S. J., Chan, W., and Wetzel, R.: Seeding of Aβ fibril formation is inhibited by all three isotopes of apolipoprotein E. Biochem., 35: 12623, 12628, 1996.Google Scholar
  55. 55.
    Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M.: Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 95: 4224–4228, 1998.PubMedCrossRefGoogle Scholar
  56. 56.
    Christen, Y.: Oxidative stress and Alzheimer disease. Am. J. 5 Clin. Nutr., 71: 621S–629S, 2000.Google Scholar
  57. 57.
    Mecocci P., MacGarvey, U., and Beal, M. F.: Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol., 36: 747–751, 1994.PubMedCrossRefGoogle Scholar
  58. 58.
    Harman, D.: Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer’s type. Age, 16: 23–30, 1993.CrossRefGoogle Scholar
  59. 59.
    Harman, D.: Aging: phenomena and theories. Ann. N.Y. Acad. Sci., 850: 1–7, 1998.CrossRefGoogle Scholar
  60. 60.
    Harman, D.: Aging: prospects for further increases in the functional life span. Age, 17:119–146, 1994.Google Scholar
  61. 61.
    Jones, H.R.: The relation of human health to age, place and time, in Handbook of Aging and the Individual, edited by Birren J. E., Chicago, Chicago University Press, 1955, pp. 333–363.Google Scholar
  62. 62.
    Sveriges Officiella Statistik. Befolknings forandringar. Livslangstabeller, 1951–1993. Statistiska centralbyran, Stockholm, Sweden, 1993, 1993: 114–15.Google Scholar
  63. 63.
    Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol, 11: 298–300, 1956.PubMedGoogle Scholar
  64. 64.
    Harman, D.: Free radical theory of aging: history, edited by Emerit, I. and Chance, B., Basel, Birkhauser, 1992, pp. 1–10.Google Scholar
  65. 65.
    Harman, D.: The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20: 145–147, 1972.PubMedGoogle Scholar
  66. 66.
    Harman, D.: Free radical theory of aging: consequences of mitochonddal aging. Age, 6: 86–94, 1983.Google Scholar
  67. 67.
    Harman, D.,: Free radical theory of aging: the “free radical” diseases. Age, 7: 111–131, 1984.CrossRefGoogle Scholar
  68. 68.
    Halliwell, B. and Gutteridge, J. M. C.: Free Radicals in Biology and Medicine, 2nd edition, Oxford, Clarendon Press, 1989.Google Scholar
  69. 69.
    Harman, D.: Free radical theory of aging: effect of free radical inhibitors on the mortality rate of male LAF1 mice. J. Gerontol., 23: 476–482, 1968.PubMedGoogle Scholar
  70. 70.
    Comfort, A.: Effect of ethoxyquin on the longevity of C3H mice. Nature, 229: 254–255, 1971.PubMedCrossRefGoogle Scholar
  71. 71.
    Harman, D. and Eddy, D. E.: Free radical theory of aging: beneficial effects of adding antioxidants to the maternal mouse diet on life span of offspring: possible explanation of the sex difference in longevity. Age, 2: 109–122, 1979.CrossRefGoogle Scholar
  72. 72.
    Mackler, B., Grace, R., and Duncan, H. M.: Studies of mitochondrial development during embryogenesis in the rat. Arch. Biochem. Biophys., 144: 603–610, 1971.PubMedCrossRefGoogle Scholar
  73. 73.
    Fanterl, A. G., Person, R. E., Tumbic, R. W., Nguyen, T.-D., and Mackler, B.: Studies of mitochondria in oxidative embryotoxicity. Teratol., 52: 190–195, 1995.CrossRefGoogle Scholar
  74. 74.
    Mcfadyen, I. R., Worth, H. G. J., Wright, D. J., et. al.,: High oestrogen excretion in pregnancy. Br. J. Obster. Gynaecol., 87: 81–86, 1980.Google Scholar
  75. 75.
    Liehr, J. G.: Genotoxic effects of estrogens, Mutat. Res., 238: 269–276, 1990.PubMedGoogle Scholar
  76. 76.
    Iwasa, D. Aono, T., and Fukuzawa, K.: Protective effect of vitamin E on fetal distress induced by ischemia of the uteroplacental system in pregnant rats. Free Rad. Biol. Med., 8: 393–400, 1990.PubMedCrossRefGoogle Scholar
  77. 77.
    Fantel, A. G., Barber, C. V., and Mackler, B.: Ischemia/reperfusion: a new hypothesis for the developmental toxicity of cocaine. Teratology, 46: 285–292, 1992.PubMedCrossRefGoogle Scholar
  78. 78.
    Rosen, D. R., Siddique, T., Patterson, D. et. al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362: 59–62, 1993.PubMedCrossRefGoogle Scholar
  79. 79.
    Nakazono, K., Watanabe, N., Matsuno, K., Saski, J., Sato, T., and Inoue, M.: Does superoxide underlie the pathogenesis of hypertension? Proc. Natl. Acad. Sci. USA, 88: 10045–10049, 1991.Google Scholar
  80. 80.
    Harman, D.: Aging: minimizing free radical damage. J. Anti-Aging Med., 2: 15–36, 1999.Google Scholar
  81. 81.
    Curhan, G. C., Willett, W. C., Rimm, E. B., et. al.: Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation, 94: 3246–3250, 1996.PubMedGoogle Scholar
  82. 82.
    Davies, C. A. and Mann, D. M. A.: Is the “preamyloid” of diffuse plaques in Alzheimer’s disease really nonfibrillar? Am. J. Pathol, 143: 1594–1605, 1993.PubMedGoogle Scholar
  83. 83.
    Sohal, R. S. and Sohal B. H.: Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev., 57: 187–202, 1991.PubMedCrossRefGoogle Scholar
  84. 84.
    Barja, G., Cadenas, S., Rojas, C., et. al.: Low mitochondrialfree radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radical Res., 21: 317–328, 1994.Google Scholar
  85. 85.
    Verhasselt, V., Goldman, M., and Willems, F.: Oxidative stress up-regulates IL-8 and TNF-α synthesis by human dendritic cells. Eur. J. Immunol., 28: 3886–3890.Google Scholar
  86. 86.
    Lue, L-F., Brachova, L., Civin, W. H., and Rogers, J.: Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathology and Exper. Neurol., 55: 1083–1088, 1996.CrossRefGoogle Scholar
  87. 87.
    Schreck, R., Riesbesr, P., and Baeuerle, A.: Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-I. EMBO J., 10: 2247–2258, 1991.PubMedGoogle Scholar
  88. 88.
    Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L-M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunders, A. M., Goldgaber, D., and Roses, A. D.: Binding of human apolipoprotein E to synthetic amyloid β peptide: Isoform-specific effects and implications for late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 90: 8098–8102, 1993.PubMedGoogle Scholar
  89. 89.
    Larsson, N.-G. and Luft, R.: Revolution in mitochondrial medicine. FEBS Lett., 455: 199–202, 1999.PubMedCrossRefGoogle Scholar
  90. 90.
    Bonilla, E., Tanji, K., Hirano, M., et. al.: Mitochondrial involvement in Alzheimer’s disease. Biochim. Biophys. Acta, 1410: 171–182, 1999.PubMedCrossRefGoogle Scholar
  91. 91.
    Brown, M. D., Shoffner, J. M., Kim, Y. L., et.al.: Mitochondrial DNA sequence analysis of four Alzheimer’s and Parkinson’s disease patients. Am. J. Med. Genet., 61: 283–289, 1996.PubMedCrossRefGoogle Scholar
  92. 92.
    Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobsu, L. A., Galasko, D., Thal, L.J., Beal, M. F., Howell, N., and Parker, Jr., W. D.: Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 94: 4526–4531, 1997.PubMedCrossRefGoogle Scholar
  93. 93.
    Shoffner, J. M., and Wallace, D. C.: Oxidative phosphorylation diseases: disorders of two genomes. Adv. Hum. Genet., 19: 267–330, 1990.PubMedGoogle Scholar
  94. 94.
    Wallace, D. C.: Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 256: 628–632, 1992.PubMedGoogle Scholar
  95. 95.
    Holt, I. J., Harding, A. E., Cooper, J. M., Schapira, A. H. V., Toscano, A., Clark, J. B., and Morgan-Hughes, J. A.: Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann. Neurol. 26: 699–708, 1989.PubMedCrossRefGoogle Scholar
  96. 96.
    Moraes, C. T., DiMauro, S., Zeviani, M., et. al.: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N. Engl. J. Med., 320: 1293–1299, 1989.PubMedCrossRefGoogle Scholar
  97. 97.
    Hardy, J.: Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci., 20: 154–159, 1997.PubMedCrossRefGoogle Scholar
  98. 98.
    Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J.M., Masters, C. L., and Beyreuther, K.: Identification, biogenesis and location of precursors of Alzheimer’s disease A4 amyloid protein. Cell, 57: 115–126, 1989.PubMedCrossRefGoogle Scholar
  99. 99.
    Yu, G., Chen, F., Levesque, G., Nishimura, M., Zhang, D-M, Levesque, L, Rogaeva, E., Xu, D., Liang, Y., Duthie, M., St George-Hyslop, P., and Fraser, P. E.: The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem., 273: 16470–16475, 1998.Google Scholar
  100. 100.
    Jacobsen, H., Resinhardt, D., Brockhaust, M., Bur, D., Kocyba, C., Kurt, H., Grim, M. G., Baumeister, R., and Loetscher, H.: The influence of endoproteolytic processing of familial Alzheimer’s disease presenilin 2 on Aβ 42 amyloid peptide formation. J. Biol.Sci., 274: 35233–35239, 1999.Google Scholar
  101. 101.
    Marzella, L., and Glaumann, H.: Autophagy, micro-autophagy and crinophagy as mechanisms for protein degradation, in Liposomes: Their Role in Protein Breakdown, edited by Glaumann, H. and Ballard, F. J., New York, Academic Press, 1987, pp. 319–366.Google Scholar
  102. 102.
    Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M., and Stokes, D. L.: Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature, 392: 835–839, 1998.PubMedCrossRefGoogle Scholar
  103. 103.
    Auer, M., Scarborough, G. A., and Kuhlbrandt, W.: Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature, 392: 840–843, 1998.PubMedCrossRefGoogle Scholar
  104. 104.
    MacLennan, D. H., Rice, W. J., and Green, N. M.: The mechanism of Ca2+ transport by sarco(Endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem., 272:28815–28818, 1997.Google Scholar
  105. 105.
    Miller, R. J.: The control of neuronal Ca2+ homeostasis. Prog. Neurobiol., 37: 255–285, 1991.PubMedCrossRefGoogle Scholar
  106. 106.
    Berridge, M. J. and Irvine, R. F.: Inositol phosphates and cell signalling. Nature, 341:197–205, 1989.PubMedCrossRefGoogle Scholar
  107. 107.
    Meszaros, L.G., Minarovic, I., and Zahradnikova, A.: Inhibition of the skeletal muscle ryanodine receptor calcium channel by nitric oxide. FEBS Lett., 380: 49–52, 1996.PubMedCrossRefGoogle Scholar
  108. 108.
    Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S.: Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279: 234–237, 1998.PubMedCrossRefGoogle Scholar
  109. 109.
    Kimura, Y., Kurzydlowski, K., Tada, M., and MacLennan, D. H.: Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J. Biol. Chem., 271: 21726–21731, 1996.Google Scholar
  110. 110.
    Hughes, G., Starling, A. P., Sharma, R. P. East, J. M., and Lee, A. G.: An investigation of the mechanism of inhibition of the Ca2+-ATPAse by phospholamban. Biochem. J., 318: 973–979, 1996.PubMedGoogle Scholar
  111. 111.
    Levine, B. A., Patchell, V. B., Sharma, P., Gao, Y., Bigelow, D. J., Yao, Q., Goh, S., Colyer, J., Drago, G. A., and Perry, S. V.: Sites on the cytoplasmic region of phospolamban involved in interaction with calcium-activated ATPase of the sarcoplasmic reticulum. Eur. J. Biochem., 264: 905–913, 1999.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang, L. H., Tu, Y. P., Yang, X. Y., Tsui, Z. C., Yang, F. Y.: Effect of ganglioside GM3 on the activity and conformation of reconstituted Ca2+-ATPase. FEBS Lett., 388: 128–130, 1996.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang, Y., Tsui, Z., Yang, F.: Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum CA2+-ATPase. FEBS Lett., 457: 144–148, 1999.PubMedCrossRefGoogle Scholar
  114. 114.
    Antipenko, A. Y., Spielman, A. I., and Kirchaberager, M.A.: Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase. J. Pharmacol. Exper. Therap., 290: 227–234, 1999.Google Scholar
  115. 115.
    Liguri, G., Cecchi, C., Latorraca, L., Pieri, A., Sorbi, S., Innocenti, D. D., and Ramponi, G.: Alteration of acylphosphatase levels in familia Alzheimer’s disease fibroblasts with presenilin gene mutations. Neurosci. Lett.,210: 153–156, 1996.PubMedCrossRefGoogle Scholar
  116. 116.
    Guo, Q., Christakos, S., Robinson, N., and Mattson, M. P.: Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA, 95: 3227–3232, 1998.PubMedCrossRefGoogle Scholar
  117. 117.
    Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P.: Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid β-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem., 72: 1019–1029, 1999.PubMedCrossRefGoogle Scholar
  118. 118.
    Richter, C., Gogvadze, V. Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., and Yaffee, M.: Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta, 1271: 67–74, 1995.PubMedGoogle Scholar
  119. 119.
    Oliver, C. and Holland, A. J.: Down’s syndrome and Alzheimer’s disease: a review. Psychological Med., 16: 307–322, 1986.CrossRefGoogle Scholar
  120. 120.
    Rumble, B., Retallack, R., Hilbich, C., et. al.: Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med., 320: 1446–1452, 1988.CrossRefGoogle Scholar
  121. 121.
    Mann, D. M. A. and Esiri, M. M.: The pattern of acquisition of plaques and tangles in the brains of patients under 50 years with Down’s syndrome. J. Neurol. Sci., 89: 169–179, 1989.PubMedCrossRefGoogle Scholar
  122. 122.
    Wisniewski, K. E., Hill, A. L., and Wisniewski, H. M.: Aging and Alzheimer’s disease in people with Down’s syndrome, in Advances in Medical Care, edited by Lott, I. T. and McCoy, E. E., Wiley-Liss, New York, 1992, pp. 167–183.Google Scholar
  123. 123.
    Sinet, P.-M., Lejeune, J., and Jerome, H.: Trisomy 21 (Down’s syndrome): glutathione peroxidase, hexose monophosphate shunt and I. Q. Life Sci., 24: 29–34, 1979.PubMedCrossRefGoogle Scholar
  124. 124.
    Busciglio, J. and Yankner, B. A.: Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature, 378: 776–779, 1995.PubMedCrossRefGoogle Scholar
  125. 125.
    Graves, A. B., White, E., Koepsell, T. D., et. al.: The association between head trauma and Alzheimer’s disease. Am. J. Epidemiol., 131: 491–501, 1990.PubMedGoogle Scholar
  126. 126.
    Roberts, G. W., Allsop, D., and Bruton, C.: The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiat., 53: 373–378, 1990.PubMedGoogle Scholar
  127. 127.
    Guterman, A. and Smith, R. W,: Neurological sequelae of boxing. Sports Med., 4: 194–210, 1987.PubMedGoogle Scholar
  128. 128.
    Roberts, G. W., Gentlemen, S. M., Lynch, A., and Graham, D. I.: βA4 Amyloid protein deposition in brain after head trauma. Lancet, 338: 1422–1423, 1991.PubMedCrossRefGoogle Scholar
  129. 129.
    Adams, C. W. M., and Bruton, C. J.: The cerebral vasculature in dementia pugilistica. J. Neurol. Neurosurg. Psychiat., 52: 600–6004, 1989.PubMedGoogle Scholar
  130. 130.
    Behl, C., Davis, J. B., Lesley, R.,and Schubert, D.: Hydrogen peroxide mediates amyloid β protein toxicity. Cell, 77: 817–827, 1994.PubMedCrossRefGoogle Scholar
  131. 131.
    Parker, Jr., W. D., Boysen, S. J., and Parks, J. K.: Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol., 26: 719–723, 1989.PubMedCrossRefGoogle Scholar
  132. 132.
    Haas, R. H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., and Scults, C. W.: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol., 37: 714–722, 1995.PubMedCrossRefGoogle Scholar
  133. 133.
    Schapira, A.H.V., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P., and Marsden, C.D.: Mitochondrial Complex I deficiency in Parkinson’s disease. J. Neurochem., 54: 823–827, 1990.PubMedGoogle Scholar
  134. 134.
    Bindoff, L. A., Birch-Machin, M. A., Cartlidge, N. E. F., Parker, Jr., W. D., and Turnbull, D. M.: Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J. Neurol. Sci., 104: 203–208, 1991.PubMedCrossRefGoogle Scholar
  135. 135.
    Ahlqvist, G., Landin, S., and Wroblewski, R.: Ultrastruture of skeletal muscle in patients with Parkinson’s disease and upper motor lesions. Lab.lnvest., 32: 673–679, 1975.Google Scholar
  136. 136.
    Agid, Y.: Parkinson’s disease: pathophysiology. Lancet, 337: 1321–1327, 1991.PubMedCrossRefGoogle Scholar
  137. 137.
    Braak, H., and Braak, E.: Cognitive impairement in Parkinson’s disease: amyloid plaques, neurofibrillary tangles, and neuropil threads in the cerebral cortex. J. Neural Transm. (P-D Sect), 2: 45–57, 1990.CrossRefGoogle Scholar
  138. 138.
    Lennox, G., Lowe, J. S., Godwin-Austen, R. B., Landon, M.,and Mayer, R. J.: Diffuse Lewy body disease: an important differential diagnosis in dementia with extrapyramidal features. Prog. Clin. Biol. Res., 317: 121–130, 1989.PubMedGoogle Scholar
  139. 139.
    Emilien, G., Beyreuther, K, Masters, C. L., and Maloteaux, J-M.: Prospects for pharmacological intervention in Alzheimer disease. Arch. Neurol., 57: 454–459, 2000.PubMedCrossRefGoogle Scholar
  140. 140.
    Harman, D.: Free radical theory of aging: increasing the average life expectancy at birth and the maximum life span. J. Anti-Aging Med., 2: 199–208, 1999.Google Scholar
  141. 141.
    Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S., and Thal, L. J.: A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Engl. J. Med., 336: 1216–1222, 1997.PubMedCrossRefGoogle Scholar
  142. 142.
    Agus, D., Gambhir, S. S., Pardridge, W. M., Spielholz, C., Baseiga, J., Vera, J. C., and Goldse, D. W.: Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin Invest. 100: 2842–2848, 1997.PubMedCrossRefGoogle Scholar
  143. 143.
    Sagara, Y., Hendler, S., Khoh-Reiter, S., Gillenwater, G. Carlo, D., Schubert, D., and Chang, J.: Propofol hemisuccinate protects neuronal cells from oxidative injury. J. Neurochem., 73: 2524–2530, 1999.PubMedCrossRefGoogle Scholar
  144. 144.
    Palmiter, R. D.: The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA, 95: 8428–8450, 1998.PubMedCrossRefGoogle Scholar
  145. 145.
    Erickson, J. C., Sewell, A. K., Jensen, L. T., Winge, D. R., and Palmiter, R. D.: Enhanced neurothrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res., 649: 297–304, 1994.PubMedCrossRefGoogle Scholar
  146. 146.
    Arts, W. F. M., Scholte, H. R., Bogaard, J. M., Kerrebijn, K. F., Luyt-Houwen, I. E. M.: NADH-CoQ reductase deficient myopathy: successful treatment with riboflavin. Lancet, 2: 581–582, 1983.PubMedCrossRefGoogle Scholar
  147. 147.
    Eleff, S., Kennaway, N. G., Buist, N. R. M, Darley-Usmar, V. M., Capaldi, R. A., Bank, W. J., and Chance, B.: 31P NMR study of improvement in oxidative phosphorylation by vitamin K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc. Natl. Acad. Sci., USA, 81: 3529–3533, 1984.PubMedGoogle Scholar
  148. 148.
    Ogasahara, S., Nishikawa, Y., and Yorifuji, S., Soga, F., Nakamura, Y., Takahashi, T., Hashimoto, S., Kono, N., and Tarui, S.: Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurol., 36: 45–53, 1986.CrossRefGoogle Scholar
  149. 149.
    Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Wilson, P., and Kogan, F.: Clinical trial of indomethacin in Alzheimer’s disease. Neurol., 43: 1609–1611, 1993.Google Scholar
  150. 150.
    Breitner, J. C. S., Gau, B. A., Welsh, K.A., Plassman, B. L., McDonald, W. M., Helms, M. J., and Anthony, J. C.: Inverse association of anti-inflammatory treatments and Alzheimer’s disease: Initial results of a co-twin control study. Neurol., 44: 227–232, 1994.Google Scholar
  151. 151.
    Rogers, J., Webster, S., Lue, L.-F., Brachova, L., Civin, W. H., Emmerling M., Shivers, B., Walker, D., and McGeer, P.: Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging, 17: 681–686, 1996.PubMedCrossRefGoogle Scholar
  152. 152.
    Tang, M.-X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R.: Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet, 348: 429–432, 1996.PubMedCrossRefGoogle Scholar
  153. 153.
    Schenk, D., Barbour, R., Dinn, W., Gordon, G., Grajeda, H., Guido, T., et. al.: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400: 173–177, 1999.PubMedCrossRefGoogle Scholar
  154. 154.
    Wolfe, M. S., Citron, M., Diehl, T. S., Xia, W., Donkor, I.O., and Selkoe, D. S.: A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J. Med. Chem., 41: 6–9, 1998.PubMedCrossRefGoogle Scholar
  155. 155.
    Soto, C., Kindy, M. S., Baumann, M., and Frangione, B.: Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem. Biophys. Res. Commun., 226: 672–680, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association, Inc. 2000

Authors and Affiliations

  • Denham Harman
    • 1
  1. 1.Department of MedicineUniversity of Nebraska College of MedicineOmaha

Personalised recommendations