Journal of the American Aging Association

, Volume 23, Issue 1, pp 17–24 | Cite as

Morphologic assessment of oxidative damage: A review

  • Terry D. Oberley
  • Theodor A. Zainal


Biochemical studies have indicated changes in anti-oxidant enzyme activities and increased oxidative damage products in many disease states, particularly aging and diseases associated with aging, such as neurodegenerative diseases and cancer. To try to determine cellular and subcellular localization of oxidative damage, our laboratory has developed quantitative light and electron microscopy immunogold techniques using specific antibodies to oxidative damage products. Results from studies of different pathologic processes are presented, illustrating that both localization and quantitation of oxidative damage products is possible. These analyses give important insights into the nature of various pathologic processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sohal, R.S., and Weindruch, R.: Oxidative stress, caloric restriction, and aging. Science, 273: 59–63, 1996.PubMedGoogle Scholar
  2. 2.
    Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism is mammalian organs. Physiol. Rev., 59: 527–605, 1979.PubMedGoogle Scholar
  3. 3.
    Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., and Lal, H.: Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev., 74: 121–133, 1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Pansarasa, O., Bertorelli, L., Vecchiet, J., Felzani, G., and Marzatico, F.: Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic. Biol. Med., 27: 617–622, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M.C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M.F.: Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med., 26: 303–308, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Pugh, T.D., Oberley, T.D., and Weindruch, R.: Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases life span and lifetime cancer incidence in mice. Cancer Res., 59: 1642–1648, 1999.PubMedGoogle Scholar
  7. 7.
    Yan, T., Jiang, X., Zhang, H.J., Li, S., and Oberley, L.W.: Use of commercial antibodies for detection of primary antioxidant enzymes. Free Radic. Biol. Med., 25: 688–693, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Uchida, K., Itakura, K., Kawakishi, S., Hiai, H., Toyokuni, S., and Stadtman, E.R.: Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch. Biochem. Biophys., 324: 241–248, 1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Uchida, K., Szweda, L.I., Chae, H-Z., and Stadtman, E.R.: Immunochemical detection of 4-hydroxy-2-nonenal protein adducts in oxidized hepatocytes. Proc. Natl. Acad. Sci. USA, 90: 8742–9846, 1993.PubMedGoogle Scholar
  10. 10.
    Toyokuni, S., Miyake, N., Hiai, H., Hagiwara, M., Kawakishi, S., Osawa, T., and Uchida, K.: The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett., 359: 189–191, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Toyokuni, S., Tanaka, T., Hattori, Y., Nishiyama, Y., Yoshida, A., Uchida, K., Ochi, H., and Osawa, T.: Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilo-triacetate-induced renal carcinogenesis model. Lab. Invest., 76: 365–374, 1997.PubMedGoogle Scholar
  12. 12.
    MacMillen-Crow, L.A., Crow, J.P., Kerby, J.D., Beckman, J.S., and Thompson, J.A.: Nitration and inactivation of manganese superoxide dismutase in chronic rejection of renal allograft. Proc. Natl. Acad. Sci. USA, 93: 11853–11858, 1996.Google Scholar
  13. 13.
    Smith, M.A., Sayre, L.M., Anderson, V.E., Harris, P.L.R., Beal, M.F., Kowall, N., and Perry, G.: Cytochemical determination of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem., 46: 731–735, 1998.PubMedGoogle Scholar
  14. 14.
    Toyokuni, S.: Reactive oxygen species-induced molecular damage and its application in pathology. Path. Int., 49: 401–410, 1999.Google Scholar
  15. 15.
    Kondo, S., Toyokuni, S., Iwasa, Y., Tanake, T., Onodera, H., Hiai, H., and Imamura M.: Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic. Biol. Med., 27: 401–410, 1999.PubMedCrossRefGoogle Scholar
  16. 16.
    Coursin, D.B., Cihla, H.P., Oberley, T.D., and Oberley, L.W.: Immunolocalization of antioxidant enzymes and isozymes of glutathione S-transferase in normal rat lung. Am. J. Physiol., 263: L679–L691, 1992.PubMedGoogle Scholar
  17. 17.
    Weisiger, R.A., and Fridovich, I.: Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial location. J. Biol. Chem., 248: 4793–4796, 1973.PubMedGoogle Scholar
  18. 18.
    McCord, J.M., and Fridovich, I.: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055, 1969.PubMedGoogle Scholar
  19. 19.
    Marklund, S.L., Holme, E., and Hellner, L.: Superoxide dismutase in extracellular fluids. Clin. Chim. Acta, 126: 41–51, 1982.PubMedCrossRefGoogle Scholar
  20. 20.
    Peeters-Joris, C., Vandervoorde, A.M., and Bandhuin, P.: Subcellular localization of superoxide dismutase in rat liver. Biochem. J., 150: 31–39, 1975.PubMedGoogle Scholar
  21. 21.
    Muse, K.E., Oberley, T.D., Sempf, J.M., and Oberley, L.W.: Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem. J., 26: 734–753, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Vertechy, M., Cooper, M.B., Ghirardi, O., and Ramacci, M.T.: Antioxidant enzyme activities in heart and skeletal muscle of rats of different ages. Exp. Gerontol., 24:211–218, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Ji L.L., Dillon, D., and Wu, E.: Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol., 258: R918–R923, 1990.PubMedGoogle Scholar
  24. 24.
    Oh-Ishi, S., Kisaki, T., Yamashita, H., Nagata, N., Suzuki, K., Taniguchi, N., and Ohno, H.: Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in skeletal muscle. Mech. Ageing Dev., 84: 65–76, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Oberley, T.D., Oberley, L.W., Slattery, A.F., Lauchner, L.J., and Elwell, J.H.: Immunohistochemical localization of antioxidant enzymes in adult Syrian hamster tissues and during kidney development. Am. J. Path., 137: 199–214, 1990.PubMedGoogle Scholar
  26. 26.
    Oberley, T.D., Oberley, L.W., Slattery, A.F., and Elwell, J.H.: Immunohistochemical localization of glutathione S-transferase and glutathione peroxidase in adult hamster tissues and during kidney development. Am. J. Path., 139: 355–369, 1991.PubMedGoogle Scholar
  27. 27.
    Oberley, T.D., Friedman, A.L., Moser, R., and Siegel, F.L.: Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol. and Applied Pharmacol., 131: 94–107, 1995.CrossRefGoogle Scholar
  28. 28.
    Daggett, D.A., Oberley, T.D., Nelson, S.A., Wright, L.S., Kornguth, S.E., and Siegel, F.L.: Effects of lead on rat kidney and liver: GST expression and oxidative stress. Toxicology, 128: 191–206, 1998.PubMedCrossRefGoogle Scholar
  29. 29.
    Arai, M., Imai, H., Koumura, T., Yoshida, M., Emoto, K., Umeda, M., Chiba, N., and Nakagawa, Y.: Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem., 274: 4924–4933, 1999.PubMedCrossRefGoogle Scholar
  30. 30.
    Bulitta, C., Ganea, C., Fahimi, H.D., and Volkl, A.: Cytoplasmic and peroxisomal catalases of the guinea pig liver: evidence for two distinct proteins. Biochim. et Biophys. Acta, 1293: 55–62, 1996.Google Scholar
  31. 31.
    Swaroop, M., Bian, J., Aviram, M., Duan, H., Bisgaier, C.L., Loo, J.A., and Sun, Y.: Expression, purification, and biochemical characterization of SAG, a ring finger redox-sensitive protein. Free Radic. Biol. Med., 27: 193–202, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Oberley, T.D., and Oberley, L.W.: Antioxidant enzyme levels in cancer. Histol. Histopath., 12: 525–535, 1997.Google Scholar
  33. 33.
    Tsai, L., Szweda, P.A., Vinogradova, O., and Szweda, L.I.: Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc. Natl. Acad. Sci. USA, 95: 7975–7980, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Zainal, T.A., Weindruch, R., Szweda, L.I., and Oberley, T.D.: Localization of 4-hydroxy-2-nonenal-modified proteins in kidney following iron overload. Free Radic. Biol. Med., 26:1181–1193, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Brennick, J.B., O’Connell, J.V., Dickerson, G.R., and Young, R.H.: Lipofuscin accumulation (so-called “melanosis”) of the prostate. Am. J. Surg. Path., 18: 446–454, 1994.PubMedCrossRefGoogle Scholar
  36. 36.
    Amin, M.B., and Bostwick, D.B.: Pigment in prostatic epithelium and adenocarcinoma: a potential source of diagnostic confusion with seminal vesicle epithelium. Modern Pathol., 9: 791–795, 1996.Google Scholar
  37. 37.
    Oberley, T.D., Toyokuni, S., and Szweda, L.I.: Localization of hydroxynonenal protein adducts in normal human kidney and selected human kidney cancers. Free Radic. Biol. Med., 27: 693–703, 1999.CrossRefGoogle Scholar
  38. 38.
    Ahn, B., Han, B.S., Kim, D.J., and Oshima, H.: Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis, 20: 1337–1344, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R., and Mizuno, Y.: Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 93: 2696–2701, 1996.PubMedCrossRefGoogle Scholar
  40. 40.
    Montine, K.S., Olson, S.J., Amarnath, V., Whetsell, W. Jr., Graham, D.J., and Montine, T.J.: Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J. Path., 150: 437–443, 1997.PubMedGoogle Scholar
  41. 41.
    Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H-X., Chen, W., Zhai, P., Sufit, R.L., and Siddique, T.: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264: 1772–1775, 1995.Google Scholar
  42. 42.
    Flood, D.G., Reaume, A.G., Gruner, J.A., Hoffman, E.K., Hirsch, J.D., Lin, Y-G., Dorfman, K.S., and Scott, R.W.: Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Path., 155: 663–672, 1999.PubMedGoogle Scholar
  43. 43.
    Anson, R.M., Senturker, S., Dizdaroglu, M., and Bohr, V.: Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radic. Biol. Med., 27: 456–452, 1999.PubMedCrossRefGoogle Scholar
  44. 44.
    Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., Sahly, M.E., Yamashita, T., Terasaki, H., Makamura, M., Uchino, M., and Ando, M.: Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Comm., 232: 497–502, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Ohhira, M., Ohtake, T., Matsumoto, A., Saito, H., Ikuta, K., Fujimoto, Y., Ono, M., Toyokuni, S., Kohgo, Y.: Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver disease. Alcohol Clin. Exp. Res., 22: S145–S149, 1997.Google Scholar
  46. 46.
    Kageyama, F., Kobayashi, Y., Koide, S.: Enhanced lipid peroxidation in chronic hepatitis C. Jpn. Pharmacol. Ther., 26: S405–S408, 1998.Google Scholar
  47. 47.
    Lee, C-K., Klopp, R.G., Weindruch, R., and Prolla, T.A.: Gene expression profile of aging and its retardation by caloric restriction. Science, 285: 1390–1393, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Bates, P.C., and Millward, D.J. Myofibrillar protein turnover. Biochem. J., 214: 587–592, 1983.PubMedGoogle Scholar
  49. 49.
    Kerver, E.D., Vogels, I.M., Bosch, K.S., Vreeling-Sindelavarova, H., van den Munckhof, R.J.M., and Frederiks, W.M.: In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. Histochem. J., 29: 229–237, 1997.PubMedCrossRefGoogle Scholar
  50. 50.
    Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., and Osawa, T.: Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potent inducer of intracellular peroxide production. J. Biol. Chem., 274: 2234–2242, 1999.PubMedCrossRefGoogle Scholar
  51. 51.
    Eiserich, J.P., Estevez, A.G., Bamberg, T.V., Ye, Y.Z., Chumley, P.H., Beckman, J.S., and Freeman, B.A.: Microtubule dysfunction by posttranslational nitrotyrosination of a-tubulin: A nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA, 96: 6365–6370, 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Yen, H-C., Oberley, T.D., Vichitbanda, S., Ho, Y-S., and St. Clair, D.K.: The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J. Clin. Invest., 98: 1253–1260, 1996.PubMedCrossRefGoogle Scholar
  53. 53.
    Yen, H-C., Oberley, T.D., Gairola, C.G., Szweda, L.I., and St. Clair, D.K.: Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch. Biochem. Biophys., 362: 59–66, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association, Inc. 2000

Authors and Affiliations

  • Terry D. Oberley
    • 1
    • 2
    • 4
  • Theodor A. Zainal
    • 3
  1. 1.Pathology and Laboratory Medicine ServiceVeterans Administration HospitalMadison
  2. 2.Department of Pathology and Laboratory MedicineUniversity of Wisconsin Medical SchoolMadison
  3. 3.Department of Nutritional SciencesUniversity of WisconsinMadison
  4. 4.Room A-35, VA HospitalMadison

Personalised recommendations