Skip to main content
Log in

Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nuclear, biological, and chemical warfare (NBC) agents cause an inevitable threat to defense forces and civilians. Exposure to these toxic agents causes a lot of damage to lives. One can avoid the damage of these toxic agents by taking appropriate preventive measures. Respiratory protection is obviously necessary when military personnel or civilians get bounded by such type of noxious situation as contaminant-free air is then required for breathing and it can only be provided by means of a proper gas mask and relevant canister. In purification of contaminated atmospheres, activated carbon has so far met with outstanding success. It removes toxic chemicals either by chemical or physical adsorption from the contaminated air. When any toxic chemicals get adsorbed on the modified impregnated carbon’s surface, they usually adsorb there by means of chemical reactions. Destruction of adsorbed toxic substances is expected by such a reactive carbon. In this perspective, an attempt has been made to review the literature from past decades on the removal of toxic chemical warfare agents (CWAs) and radioactive content from air stream in case of any nuclear, biological, and chemical attack by selectively modifying or impregnating the activated carbon surface. This review also covers some important adsorption properties of materials being used in gas mask filters for effective removal of chemicals from airstream. The probable removal mechanisms of various chemical warfare agents and radioactive content have also been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme I
Scheme II
Scheme III
Scheme IV

Similar content being viewed by others

References

  • Abha SS, Beer S, Mamta S, Suryanarayana MVS, Semwal RP, Ganesan KS (2006) In-situ degradation of sulphur mustard and its simulants on the surface of impregnated carbon systems. J Hazard Mater B 133:106–112

    Article  Google Scholar 

  • Altintig E, Kirkil S (2016) Preparation and properties of Ag-coated activated carbon nanocomposites produced from wild chestnut shell by ZnCl2 activation. J Taiwan Inst Chem Eng 63:180–188

    Article  CAS  Google Scholar 

  • Alves BR, Clark AJ (1986) An examination of the products formed on reaction of hydrogen cyanide and cyanogen with copper, chromium (6+) and copper-chromium (6+) impregnated activated carbons. Carbon 24(3):287–294

    Article  CAS  Google Scholar 

  • Baker FS et al (1992) Encyclopedia. 1015:4

    Google Scholar 

  • Barker ME (1926) Gas mask development. Chem Warfare 12(7):11–15

    Google Scholar 

  • Beer S, Prasad GK (1999) A new method of preparation of Cu, Cr and Ag impregnated carbon. In Proceedings of National Symposium on Carbon, NPL, Delhi

  • Beer S et al (2001) The reaction of thiodiglycol on metal impregnated carbon. Carbon 39(14):2131–2142

    Article  Google Scholar 

  • Beguin HPF (1993) The effects of molybdenum on stabilizing the performance of an experimental copper/zinc impregnated, activated carbon. Letters to the Editor

  • Biron E, Stavisky R (1995) Deactivation of ASC whetlerite charcoal upon adsorption of cyanogen chloride. Carbon 33(10):1413–1416

    Article  CAS  Google Scholar 

  • Blacet FE (1943) Preparation of a protective adsorbent carbon. US Patent 516314

  • Blacet FE (1960) Whetlerite product and process. US Patent 51960

  • Bradley RH (1995) Surface studies of cu/Cr/ag impregnated microporous carbons. J Appl Surf Sci 90:271–276

    Article  CAS  Google Scholar 

  • Burgess JA (1902) Method of purifying acetylene. US Patent 701995

  • Caplon (1930) Preparation of protective adsorbent carbon. US Patent 1771396

  • Chiang HL et al (2000) Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas. Sep Sci Technol 35(6):903–918

    Article  CAS  Google Scholar 

  • Davey J (1992) Proc. of the 4th Int. Symp. on Protection against Chemical Warfare Agents, Stockholm (Sweden)

  • David MH (1932) Process for the manufacture of highly actuated adsorptive carbons. US patent 1,849,503

  • Deitz VR (1987) Interaction of radioactive iodine gaseous species with nuclear-grade activated carbons. Carbon. 25(1):31–38

    Article  CAS  Google Scholar 

  • Derbyshire F, Thwaites M, Patrick JW (1995) Porosity in carbons. Edward Arnold, London

  • Dhawan R et al (2017) Influence of metal impregnants on adsorption of dimethylsulfide vapors by activated carbons. Mater Today 4(9):10515–10519

    Google Scholar 

  • Dittrich (1940) Whetlerite product and process. US Patent 2212593

  • Doughty DT (1991) Chromium free impregnated Activated carbon for adsorption of toxic Gases US Patent 5063196

  • Doughty DT et al (1996) Chromium free impregnated activated universal respirator carbon for adsorption of toxic gases and/or vapors in industrial applications. US Patent 5492882

  • Dubinin MM (1955) Surface oxides and adsorption properties of activated carbons. Uspekhi Khim 24:3

    CAS  Google Scholar 

  • Dubinin MM (1965) Contemporary state of the theory of volume filling of micropores of adsorbents on the adsorption of gases and vapours on carbon adsorbents. Zhur fiz Khim 39(6):1305–1317

    CAS  Google Scholar 

  • Dubinin MM, Plavnik GM (1968) Microporous structures of carbonaceous adsorbents. Carbon 6(2):183–192

    Article  CAS  Google Scholar 

  • Dubinin MM, Zaverina ED, Timofeyev DP (1949) Sorption and structure of active carbons.VI. The structure types of active carbons. Zhur fiz Khim 23:1129–1140

    CAS  Google Scholar 

  • Ecob CM et al (1993) Effect of humidity on the trapping of radioiodine by impregnated carbons. Sci Total Environ 131:419–427

    Article  Google Scholar 

  • Ehrburger PD, Dziedzinl J, Fangeat R (1990) Thermal behaviour of chromium trioxide deposited on carbons. Carbon 28(1):113–118

    Article  CAS  Google Scholar 

  • Emmet PH (1948) Adsorption and pore size measurements on charcoals and whetlerites. Chem Rev 43:69–148

    Article  Google Scholar 

  • Fortier H (2007) The science of impregnation and the optimization of the performance of impregnated activated carbons for gas mask applications. Ph.D Thesis Department of Chemistry, Dalhousie University, Halifax, Nova Scotia

  • Friday DK (1988) The breakthrough behaviour of a light gas in a fixed-bed adsorption reactor. AIChE Symp Ser 84(264):89–93

    CAS  Google Scholar 

  • Frund (1998) Respirator filter system. US Patent 5714126

  • Gall RD (1997) Destruction of thioether of mustard analogue by divanado decamolybdophosphonic acid. Chem Abstr 126:224933

    Google Scholar 

  • González-García CM, González JF, Román S (2011) Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons. Fuel Process Technol 92(2):247–252

    Article  Google Scholar 

  • Groose et al (1985) Sublimation of amine compounds on activated carbon pore surfaces. US Patent 4531953

  • Harry M (2006) Activated carbon. Elsevier Ltd, Oxford

  • Hinds WC (1999) Aerosol technology: properties, behaviour and measurement of airborne particles, 2nd edn. Wiley’s, New York

  • Ho K et al (2019a) Design of highly efficient adsorbents for removal of gaseous methyl iodide using tertiary amine-impregnated activated carbon: integrated experimental and first-principles approach. Chem Eng J 373:1003–1011

    Article  CAS  Google Scholar 

  • Ho K, Moon S, Lee HC, Hwang YK, Lee CH (2019b) Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions. J Hazard Mater 368:550–559

    Article  CAS  Google Scholar 

  • Ho K et al (2020) Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures. Chem Eng J 396:125215

    Article  CAS  Google Scholar 

  • Inagaki M, Tascon JMD (2006) Pore formation and control in carbon materials. In: T.J. Bandosz, ed. Activated Carbon Surfaces in Environmental Remediation. Interf Sci Technol Elsevier, San Diego 7:49–105

    Article  CAS  Google Scholar 

  • Jonas LA, Rehrmann JA (1972) The kinetics of adsorption of organo phosphorous vapours from air mixtures by activated carbons. Carbon 10:657–663

    Article  CAS  Google Scholar 

  • Jonas LA, Rehrmann JA (1973) Predictive equations in gas adsorption kinetics. Carbon 11(1):59–64

    Article  CAS  Google Scholar 

  • Jonas LA, Rehrmann JA (1974) The rate of gas adsorption by activated carbon. Carbon 12(2):95–101

    Article  CAS  Google Scholar 

  • Jonas LA et al (1985) The effect of moisture on the adsorption of chloroform by activated carbon. J Am Ind Hyg Assoc 46:20–23

    Article  CAS  Google Scholar 

  • Kaiser et al (2008) Chromium free universal respirator carbon. US Patent 7425521

  • Karwacki CJB et al (1999) Effect of temperature on the desorption and decomposition of mustard from activated carbon. Langmuir 8645-8650

  • Keith CH et al (1967) Process of impregnating adsorbent materials with metal oxides. United States, Liggett & Myers Tobacco Co

  • Kiani SS, Faiz Y, Farooq A, Ahmad M, Irfan N, Nawaz M, Bibi S (2020) Synthesis and adsorption behavior of activated carbon impregnated with ASZM-TEDA for purification of contaminated air. Diam Relat Mater 108:107916

    Article  CAS  Google Scholar 

  • Kiani SS, Farooq A, Faiz Y, Shah A, Ahmad M, Irfan N, Iqbal M, Usman AB, Mahmood A, Nawaz M, Bibi S, Aziz A (2021) Investigation of Cu/Zn/Ag/Mo-based impregnated activated carbon for the removal of toxic gases, synthesized in aqueous media. Diam Relat Mater 111:108179

    Article  CAS  Google Scholar 

  • Kitani S, Noro T, Kohara T (1972) Removal of methyl iodide by impregnated charcoals from flowing air under humid condition. J Nucl Sci Technol 9:197–202

    Article  CAS  Google Scholar 

  • Kluczka J, Trojanowska J, Zolotajkin M, Ciba J, Turek M, Dydo P (2007) Boron removal from wastewater using adsorbents. Environ Technol 28(1):105–113

    Article  CAS  Google Scholar 

  • Latimer (1944) Impregnated carbons and process of making the same. US Patent 519383

  • Liang (1995) Organic amine impregnated activated carbon. US Patent 5462908

  • Liu E, Sarkar B, Chen Z, Naidu R (2016) Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite. Microporous Mesoporous Mater 225:450–455

    Article  CAS  Google Scholar 

  • Mattson JS, Mark HB (1971) Activated carbon, surface chemistry and adsorption from solution. Marcel Dekker Inc, New York

  • McEnaney B (1988) Adsorption and structure in microporous carbons. Carbon 26(3):267–274

    Article  CAS  Google Scholar 

  • Mitsumoria N (1977) Method of treating silver impregnated activated carbon. US Patent 4045553

  • Morrell JC (1950) Preparation of a protective adsorbent carbon. US Patent 2511288

  • Morrison RW (2001) Research and technology directorate. Chemical Biological Centre, USA

  • Muntz L (1902) Respirator. US Patent 703948

  • Nelson GO, Correia AN (1976) Respirator cartridge efficiency studies: VIII. Summary and conclusions. Am Ind Hyg Assoc J 37(9):514–525

    Article  CAS  Google Scholar 

  • Nickolov RN (2004) Comparative study on removal efficiency of impregnated carbons for hydrogen cyanide vapors in air depending on their phase composition and porous textures. J Colloid Interface Sci 273:87–94

    Article  CAS  Google Scholar 

  • Ninomiya N et al (1980) Removal of nitrogen oxides. United States Patent 4210628

  • Nishino H et al (1986) Method for removal of poisonous gases. Takeda Chemical Industries, Ltd. (Osaka, JP): United States Patent 4594231

  • Norris J, Fowler W (1997) NBC: nuclear, biological, and chemical warfare on the modern battlefield. Brasseys UK Limited

  • Noyes WAJ (1946) Military problems with aerosols and non-persistent gases. Summary Technical report of the National Defence Research Committee (NDRC), Division 10. Washington NDRC: 40-168

  • Oliver TCM (2005) Synthetic activated carbons for the removal of hydrogen cyanide from air. J Chem Eng Process 44:1181–1187

    Article  CAS  Google Scholar 

  • Park SW, Park HS, Lee WK, Moon H (1995) Effect of water vapor on adsorption of methyl iodide to triethylenediamine-impregnated activated carbons. Sep Technol 5(1):35–44

    Article  CAS  Google Scholar 

  • Park GI et al (2001) Effect of temperature on the adsorption and desorption characteristics of methyl iodide over TEDA-impregnated activated carbon. Carbon Lett 2(1):9–14

    Google Scholar 

  • Peter L (2006a) Adsorption of chemical warfare agents In: T.J. Bandosz, ed. Activated Carbon Surfaces in Environmental Remediation. Interf Sci Technol Elsevier, San Diego 7:475–528

    Google Scholar 

  • Peter L (2006b) Modelling gas phase adsorption in industrial and military applications. Springer, Dordrecht

  • Peterson GW, Rossin JA, Smith PB, Wagner GW (2010) Effects of water on the removal of methyl bromide using triethylene diamine impregnated carbon. Carbon. 48(1):81–88

    Article  CAS  Google Scholar 

  • Poziomek EJ, Mackay RA, Barrett RP (1975) Electron spin resonance studies with copper/silver/chromium impregnated charcoals. Carbon. 13(4):259–262

    Article  CAS  Google Scholar 

  • Prasad GK (2003) Studies on adsorption of toxic chemicals on carbon. Doctoral Thesis

  • Prasad GK, Beer S (2004) Reactions of sulphur mustard on impregnated carbons. J Hazard Mater 116(3):213–217

    Article  CAS  Google Scholar 

  • Prasad GK, Singh B (2006) Breakthrough behaviour of sulphur mustard vapour on whetlerite carbon. J Hazard Mater 137(1):277–281

    Article  CAS  Google Scholar 

  • Prasad GK et al (2005) Kinetics of degradation of sulphur mustard on impregnated carbons. J Hazard Mater 121(1):159–165

    Article  CAS  Google Scholar 

  • Prasad GK, Mahato TH, Yadav SS, Singh B (2007a) Sulphur mustard vapor breakthrough behaviour on reactive carbon systems. J Hazard Mater 143(1):150–155

    Article  CAS  Google Scholar 

  • Prasad GK et al (2007b) Breakthrough behaviour of sulphur mustard on activated carbon. J Sci Ind Res 143(1–2):150–155

    CAS  Google Scholar 

  • Prasad GK, Beer S, Vijayaraghavan R (2008) Respiratory protection against chemical and biological warfare agents. Def Sci J 58:686–697

    Article  CAS  Google Scholar 

  • Raymundo-Piñero E, Cazorla-Amorós D, Linares-Solano A (2003) The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41(10):1925–1932

    Article  Google Scholar 

  • Rehrmann JA, Jonas LA (1978) Dependence of gas adsorption rates on carbon granule size and linear flow velocity. Carbon 16(1):47–51

    Article  CAS  Google Scholar 

  • Reucroft PJ, Rao PB, Freeman GB (1983) Binary vapor adsorption by activated carbon. Carbon 21(3):171–176

    Article  CAS  Google Scholar 

  • Roman S (2011) Removal efficiency of radioactive iodide on TEDA impregnated activated carbon. J Fuel Process Technol 92:247–252

    Article  Google Scholar 

  • Romero JV et al (2013) Evolution of the SO2 and NH3 gas adsorption properties of CuO/ZnO/Mn3O4and CuO/ ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods. J. Am Chem Soc 15:101–110

  • Rossin JA, Morrison RW (1991) Spectroscopic analysis and performance of an experimental copper/zinc impregnated, activated carbon. Carbon 29(7):887–892

    Article  CAS  Google Scholar 

  • Rossin JA, Morrison RW (1993) The effects of molybdenum on stabilizing the performance of an experimental copper/zinc impregnated, activated carbon. Carbon 31(4):657–659

    Article  CAS  Google Scholar 

  • Rossin JA, Petersen E, Tevault D, Lamontagne R, Isaacson L (1991) Effects of environmental weathering on the properties of ASC-whetlerite. Carbon 29(2):197–205

    Article  CAS  Google Scholar 

  • Schwenk M (2018) Chemical warfare agents. Classes and targets. Toxicol Lett 293:253–263

    Article  CAS  Google Scholar 

  • Sharma A, Saxena A, Singh B, Suryanarayana MVS, Ganeshan K, Sekhar K, Dwivedi KK (2006) Development and evaluation of modified whetlerite, an adsorbent material for in situ degradation of sulphur mustard. Carbon 44(5):907–912

    Article  CAS  Google Scholar 

  • Sing KS (1989) The use of physisorption for the characterization of microporous carbons. Carbon 27(1):5–11

    Article  Google Scholar 

  • Smisek M, Cerny S (1970) Active carbon, manufacture,properties and applications. Elsevier Publishing Co, New York

  • Smith SJ, Hern JA (2002) Broad spectrum filter system for filtering contaminants from air or other gases. US Patent 6344071

  • Smith JWH, Westreich P, Croll LM, Reynolds JH, Dahn JR (2009) Understanding the role of each ingredient in a basic copper carbonate based impregnation recipe for respirator carbons. J Colloid Interface Sci 337(2):313–321

    Article  CAS  Google Scholar 

  • Smith JWH, Westreich P, Abdellatif H, Filbee-Dexter P, Smith AJ, T.E.Wood, Croll LM, Reynolds JH, Dahn JR (2010) The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications. J Hazard Mater 180(1):419–428

    Article  CAS  Google Scholar 

  • Smith JWH, Romero JV, Dahn TR, Dunphy K, Sullivan B, Mallay M, Croll LM, Reynolds JH, Andress C, Dahn JR (2011) The effect of heating temperature and nitric acid treatments on the performance of Cu- and Zn-based broad spectrum respirator carbons. J Colloid Interface Sci 364(1):178–194

    Article  CAS  Google Scholar 

  • Stoeckli HF (1990) Microporous carbons and their characterization: the present state of the art. Carbon 28(1):1–6

    Article  CAS  Google Scholar 

  • Tolles (1989) Method and apparatus for removal HCN, CNCl and CN2 from air. US Patent 4801311

  • Van Der S (1987) Air cleaning material for use in air filters. US patent 4677096

  • Waitt AH (1941) Gas warfare. In The chemical weapon, its use, and protection against it. Little & Ives Company, New York

  • Waters WA, Williams JH (1950) Hydrolyses and derivatives of some vesicant arsenicals. J Chem Soc (Resumed) 18-22

  • Wigg EO, Morse NL (1960) Whetlerite product and process. US Patent 2920051

  • Williams MC, Steel RJ (1985) Gas! The battle for Ypres. Vanwell Publishing company Limited, Deyell Co, Canada

  • Wilson RE, Whetzel JC (1924) US Patent 1519470

  • Wood GO (1981) Respirator canister testing for radioiodine. Am Ind Hyg Assoc J 42(8):570–578

    Article  CAS  Google Scholar 

  • Wood GO (1985) Effects of air temperatures and humidities on efficiencies and lifetimes of air purifying chemical respirator cartridges tested against methyl iodide. Am Ind Hyg Assoc J 46(5):251–256

    Article  CAS  Google Scholar 

  • Wu LC, Chung YC (2009) Replacement of hazardous chromium impregnating agent from silver/copper/chromium impregnated active carbon using tri-ethylene diamine to remove hydrogen sulfide, trichloro methane, ammonia and sulfur dioxide. J Air Waste Manage Assoc 59(3):258–262

    Article  CAS  Google Scholar 

  • Wu LC, Chang TH, Chung YC (2007) Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with TEDA. J Air Waste Manage Assoc 57:1461–1468

    Article  CAS  Google Scholar 

  • Zeng H, Jin F, Guo J (2004) Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel 83(1):143–146

    Article  Google Scholar 

  • Zhou J, Hao S, Gao L, Zhang Y (2014) Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. J Ann Nuclear Energy 72:237–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sidra Shaoor Kiani: data collection, writing-original draft preparation

Amjad Farooq: idea of writing review paper, full guidance, literature review

Masroor Ahmad: instructions

Naseem Irfan: instructions

Mohsan Nawaz: instructions

Muhammad Asim Irshad: assistance

Corresponding author

Correspondence to Sidra Shaoor Kiani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, S.S., Farooq, A., Ahmad, M. et al. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content. Environ Sci Pollut Res 28, 60477–60494 (2021). https://doi.org/10.1007/s11356-021-15973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15973-1

Keywords

Navigation