Skip to main content

Advertisement

Log in

Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted to identify the bioactive phytochemicals in Salvia officinalis essential oil, to determine the polyphenols in the aqueous extract (SOE), and to evaluate their protective role against cadmium (Cd)-induced oxidative damage and genotoxicity in rats. Six groups of female rats were treated orally for 2 weeks including the control group, CdCl2-treated group, SOE-treated groups at low or high dose (100 and 200 mg/kg b.w), and CdCl2 plus SOE-treated groups at the two doses. The GC-MS analysis identified 39 compounds; the main compounds were 9-octadecenamide, eucalyptol, palmitic acid, and oleic acid. However, the HPLC analysis showed 12 polyphenolic compounds and the majority were coumaric acid, chlorogenic acid, coffeic acid, catechin, vanillin, gallic acid, ellagic acid, and rutin. In the biological study, rats received CdCl2 displayed severe disturbances in liver and kidney indices alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), total protein (TP), total bilirubin (T. Bil), direct bilirubin (D. Bil), creatinine, uric acid, and urea, lipid profile, tumor necrosis factor-alpha (TNF-α), alpha-fetoprotein (AFP) and CEA), glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA), nitric oxide (NO), gene expressions, DNA fragmentation, and histological alterations in the liver and kidney tissue. SOE showed a potent antioxidant and mitigated these alterations in serum and tissue. Moreover, the high dose succeeded to normalize most of the tested parameters and histological features. It could be concluded that S. officinalis is a promising source for bioactive compounds with therapeutic benefits against environmental toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdeen A, Abou-Zaid OA, Abdel-Maksoud HA, Aboubakr M, Abdelkader A, Abdelnaby A, Abo-Ahmed AI, El-Mleeh A, Mostafa O, Abdel-Daim M, Aleya L (2019) Cadmium overload modulates piroxicam-regulated oxidative damage and apoptotic pathways. Environ Sci Pollut Res Int 26(24):25167–25177

    CAS  Google Scholar 

  • Abdel-Aziem SH, El-Nekeety AA, Barakat IA, Mohamed IM, Abdel-Wahhab MA (2011) Aquilegia vulgaris extract protects against the oxidative stress and the mutagenic effects of cadmium. Exp Toxicol Pathol 63(4):337–344

    CAS  Google Scholar 

  • Abdel-Wahhab MA, El-Nekeety AA, Salman AS, Hathout AS, Abdel-Aziem SH, Sabry BA, Hassan NS, Abdel-Aziz MS, Aly SA, Jaswir I (2020a) Bioactive compounds from Aspergillus niger extract enhance the antioxidant activity and prevent the genotoxicity in AFB1-treated rats. Toxicon 181:57–68

    CAS  Google Scholar 

  • Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Hassan NS, Abdel-Aziz MS (2020b) Secondary metabolites from Bacillus sp. MERNA97 extract attenuates the oxidative stress, genotoxicity and cytotoxicity of aflatoxin B1 in rats. Food Chem Toxicol 141:111399. https://doi.org/10.1016/j.fct.2020.111399

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Jaswir I, Salleh HM (2021) Zinc loaded whey protein nanoparticles mitigate the oxidative stress and modulate antioxidative gene expression in testicular tissues in rats. J Drug Deliv Sci Technol 61:102322. https://doi.org/10.1016/j.jddst.2021.102322

    Article  CAS  Google Scholar 

  • Aboshanab MHA, El-Nabarawi MA, Teaima MH, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA (2020) Fabrication, characterization and biological evaluation of silymarin nanoparticles against carbon tetrachloride-induced oxidative stress and genotoxicity in rats. Int J Pharm 587:119639. https://doi.org/10.1016/j.ijpharm.2020.119639

    Article  CAS  Google Scholar 

  • Abu-Darwish MS, Cabral C, Ferreira IV, Gonçalves MJ, Cavaleiro C, Cruz MT, Al-bdour TH, Salgueiro L (2013) Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and is antifungal and anti-inflammatory potential. Biomed Res Int 2013: Article ID 538940. https://doi.org/10.1155/2013/538940

  • Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A (2013) Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem 141:91–97

    CAS  Google Scholar 

  • Alghasham A, Salem TA, Meki AR (2013) Effect of cadmium polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem Toxicol 59(22):160–164

    CAS  Google Scholar 

  • Al-Qudah MA, Tashtoush HI, Khlaifat EF, Ibrahim SO, Saleh AS, Al-Jaber HI, Abu Zarga MH, Abu Orabi ST (2020) Chemical constituents of the aerial parts of Salvia judaica Boiss from Jordan. Nat Prod Res 34(20):2981–2985

    CAS  Google Scholar 

  • Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, Spasojevic-Kalimanovska V, Jovanovic M, Boricic N, Wallace D, Bulat Z (2019) Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health 16(2):274. https://doi.org/10.3390/ijerph16020274

    Article  CAS  Google Scholar 

  • Arabi S, Arshami J, Haghparast A (2014) Effects of Salvia officinalis L. extract on biochemical blood parameters in male rats. J Adv Med Biomed Res 2014 22(94):34–43

    Google Scholar 

  • Badiee P, Nasirzadeh AR, Motaffaf M (2012) Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species. J Pharm Technol Drug Res 1:7. https://doi.org/10.7243/2050-120X-1-7

    Article  CAS  Google Scholar 

  • Badisa VL, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22:141–144

    Google Scholar 

  • Baj T, Ludwiczuk A, Sieniawska E, Woèniak KS, Widelski J, Zieba K, G£owniak K (2013) GC-MS analysis of essential oils from salvia officinalis l.: comparison of extraction methods of the volatile components. Acta Pol Pharm 70(1):35–40

    CAS  Google Scholar 

  • Bancroft D, Stevens A, Turmer R (1996) Theory and practice of histological technique, 4th edn. Churchill LivingStone, Edinburgh, London and New York, pp 273–292

    Google Scholar 

  • Belyaeva EA, Dymkowska D, Wieckowski MR, Wotczak L (2008) Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharmacol 231:34–42

    CAS  Google Scholar 

  • Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23(4):965. https://doi.org/10.3390/molecules23040965

    Article  CAS  Google Scholar 

  • Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J 394652:1–7

    Google Scholar 

  • Bonaventura P, Lamboux A, Albarède F, Miossec P (2017) Regulatory effects of zinc on cadmium-induced cytotoxicity in chronic inflammation. PLoS One 12(7):e0180879. https://doi.org/10.1371/journal.pone.0180879

    Article  CAS  Google Scholar 

  • Borges LP, Brandao R, Godoi B, Nogueira CW, Zenidoi G (2008) Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats. Chem Biol Interact 171:15–25

    CAS  Google Scholar 

  • Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA, Tsatsakis AM, Schweitzer A, Wallace D (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19:1501. https://doi.org/10.3390/ijms19051501

    Article  CAS  Google Scholar 

  • Burton K (1956) A study of the conditions and mechanisms of the diphenylaminereaction for the estimation of deoxyribonucleic acid. Biochem J 62:315–323

    CAS  Google Scholar 

  • Cannino G, Feruggia E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384

    CAS  Google Scholar 

  • Chatterjee S, Kundu S, Bhattacharyya A (2008) Mechanism of cadmium induced apoptosis in the immunocyte. Toxicol Lett 177:83–89

    CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  Google Scholar 

  • El Hadri A, del Río MAG, Sanz J, Coloma AG, Idaomar M, Ozonas BR, González JB, Reus MI (2010) Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An R Acad Nac Farm 76:343–356

    Google Scholar 

  • El-Kady AA, Sharaf HA, Abbès S, Ben Salah-Abbès J, Naguib KM, Oueslati R, Abdel-Wahhab MA (2009) Adsorption of Cd2+ ions on an Egyptian montmorillonite and toxicological effects in rats. Appl Clay Sci 44(1-2):59–66

    CAS  Google Scholar 

  • Elkhadragy MF, Abdel-Moneim AE (2017) Protective effect of Fragaria ananassa methanolic extract on cadmium chloride (CdCl2)- induced hepatotoxicity in rats. Toxicol Mech Methods 27(5):335–345

    CAS  Google Scholar 

  • Fu Z, Wang H, Hu X, Sun Z, Han C (2013) The pharmacological properties of Salvia essential oils. J Appl Pharm Sci 07:122–127

    CAS  Google Scholar 

  • Gandhi M, Aggarwal M, Puri S, Singla SK (2013) Prophylactic effect of coconut water (Cocos nucifera L.) on ethylene glycol induced nephrocalcinosis in male Wistar rat. Int Braz J Urol 39:108–117

    CAS  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782. https://doi.org/10.3390/ijerph17113782

    Article  CAS  Google Scholar 

  • Gheraibia S, Belattar B, Abdel-Wahhab MA (2020) HPLC analysis, antioxidant and cytotoxic activity of different extracts of Costus speciosus against HePG-2 cell lines. South Afr J Bot 131:222–228

    CAS  Google Scholar 

  • Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7:433–440

    Google Scholar 

  • Godarzi SM, Gorji AV, Gholizadeh B, Mard SA, Mansouri E (2020) Antioxidant effect of p-coumaric acid on interleukin 1- and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrologia 40(3):311–319

    Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol (London, England) 1:22

    Google Scholar 

  • Güzela S, Özayb Y, Kumas M, Uzun C, Özkorkmaz G, Yıldırım Z, Ülger M, Güler G, Çelik A, Çamlıca Y, Kahraman A (2019) Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother 111:1260–1276

    Google Scholar 

  • Hall P, Cash J (2012) What is the real function of the liver ‘function’ tests? Ulster Med J 81(1):30–36

    Google Scholar 

  • Hasan MR, Al-Jaber HI, Al-Qudah MA, Abu Zarga MA (2016) New sesterterpenoids and other constituents from Salvia dominica growing wild in Jordan. Phytochem Lett 16:12–17

    CAS  Google Scholar 

  • Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA (2019) Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food Chem Toxicol 125:439–445

    CAS  Google Scholar 

  • Horvẚthovẚ E, Srancíkova A, Regendová-Sedláčková E, Melušová M, Meluš V, Netriová J, Krajčovičová Z, Slameňová D, Pastorek M, Kozics K (2016) Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis 31:51–59

    Google Scholar 

  • Hussein SA, Omnia M, Fayed AM (2014) Protective effects of alpha-lipoic acid and melatonin against cadmium-induced oxidative stress in erythrocytes of rats. J Pharmacol Toxicol 9:1–24

    CAS  Google Scholar 

  • Jakovljević M, Jokić S, Molnar M, Jašić M, Babić J, Jukić H, Banjari I (2019) Review Bioactive Profile of Various Salvia officinalis L. Preparations Plants 8:55. https://doi.org/10.3390/plants8030055

    Article  CAS  Google Scholar 

  • Jasicka-Misiak I, Poliwoda A, Petecka M, Buslovych O, Shlyapnikov V, Wieczorek P (2018) Antioxidant Phenolic Compounds in Salvia officinalis L. and Salvia sclarea L. Ecol Chem Eng 25:133–142

    CAS  Google Scholar 

  • Kamatou GP, Makunga NP, Ramogola WPN, Viljoen AM (2008) South African salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol 119(3):664–672

    CAS  Google Scholar 

  • Kang MY, Cho SH, Lim YH, Seo JC, Hong YC (2013) Effects of environmental cadmium exposure on liver function in adults. Occup Environ Med 70(4):268–273

    CAS  Google Scholar 

  • Kany S, Vollrath JT, Relja B (2019) Cytokines in Inflammatory Disease. Int J Mol Sci 20(23):6008. https://doi.org/10.3390/ijms20236008

    Article  CAS  Google Scholar 

  • Karimi E, Jaafar HZE, Ghasemxadeh A, Ebrahimi M (2015) Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol Res 48:9. https://doi.org/10.1186/0717-6287-48-9

    Article  CAS  Google Scholar 

  • Kaur G, Shivanandappa TB, Kumar M, Kushwa AS (2020) Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn Schmiedeberg's Arch Pharmacol 393:1911–1920

    CAS  Google Scholar 

  • Khare R, Upmanyu N, Jha M (2019) Exploring the potential effect of Methanolic extract of Salvia officinalis against UV exposed skin aging: In vivo and In vitro model. Curr Aging Sci:12. https://doi.org/10.2174/1874609812666190808140549

  • Kolac UK, Ustuner MC, Tekin N, Ustuner D, Colak E, Entok E (2017) The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. J Med Food 20(12):1193–1200

    CAS  Google Scholar 

  • Kozics K, Klusova V, Rančíková A, Mučaji P, Slameňová D, Hunáková L, wicz KB, Horváthová E (2013) Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem Toxicol 141:2198–2206

    CAS  Google Scholar 

  • Kuo JH, Jan MS, Jeng J, Chiu HW (2005) Induction of apoptosis in macrophages by air oxidation of dioleoylphosphatidylglycerol. J Control Release 108:442–452

    CAS  Google Scholar 

  • Lehbili M, AlabdulMagid A, Kabouche A, Voutquenne-Nazabadioko L, Abedini A, Morjani H, Gangloff SC, Kabouche Z (2018) Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri. Nat Prod Res 32:2683–2691

    CAS  Google Scholar 

  • Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16(11):26087–26124

    CAS  Google Scholar 

  • Limaye PV, Raghuram N, Sivakami S (2003) Oxidative stress and gene expression of antioxidant enzymes in the renal cortex of streptozotocin induced diabetic rats. Mol Cell Biochem 243:147–152

    CAS  Google Scholar 

  • Lin CC, Hsu YF, Lin TC, Hsu FL, Hsu HY (1998) Antioxidant and hepatoprotective activity of Punicalagin and Punicalin on carbon tetrachloride induced liver damage in rats. J Pharm Pharmacol 50:789–794

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25(4):402–408

    CAS  Google Scholar 

  • Marcinek K, Krejpcio Z (2017) Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications- a review. Rocz Panstw Zakl Hig 68(2):123–129

    CAS  Google Scholar 

  • Markiewicz-Górka I, Pawlas K, Jaremków A, Januszewska L, Pawłowski P, Pawlas N (2019) Alleviating effect of α-lipoic acid and magnesium on cadmium-induced inflammatory processes, oxidative stress and bone metabolism disorders in Wistar rats. Int J Environ Res Public Health 16(22):4483. https://doi.org/10.3390/ijerph16224483

    Article  CAS  Google Scholar 

  • Mężyńska M, Brzóska MM, Rogalska J, Piłat-Marcinkiewicz B (2018) Extract from Aronia melanocarpa L. berries prevents cadmium-induced oxidative stress in the liver: a study in a rat model of low-level and moderate lifetime human exposure to this toxic metal. Nutrients 11(1):21. https://doi.org/10.3390/nu11010021

    Article  CAS  Google Scholar 

  • Moghaddam FM, Amiri R, Alam M, Hossain MB, Van der Helm D (1998) Structure and absolute stereochemistry of Salvimirzacolide, a new sesterterpene from Salvia mirzayanii. J Nat Prod 61:279–281

    CAS  Google Scholar 

  • Mohamed AY, Mustafa AA (2019) Gas Chromatography-Mass Spectrometry (GC-MS) analysis of essential oil Salvia officinalis in Sudan. 10.20944/preprints201902.0218.v1.

  • Murugavel P, Pari L (2007) Diallyl tetrasulfide protects cadmium-induced alterations in lipids and plasma lipoproteins in rats. Nutr Res 27:356–361

    CAS  Google Scholar 

  • Nengroo ZR, Rauf A (2019) Fatty acid composition and antioxidant activities of five medicinal plants from Kashmir. Ind Crop Prod 140:111596. https://doi.org/10.1016/j.indcrop.2019.111596

    Article  CAS  Google Scholar 

  • Nishimura FDY, Almeida AC, Ratti BA, Ueda-Nakamura T, Nakamura CV, Ximenes VF (2013) Silva SDO (2013) Antioxidant effects of quercetin and naringenin are associated with impaired neutrophil microbicidal activity. Evid Based Complement Alternat Med 2013:1–7. https://doi.org/10.1155/2013/795916

    Article  Google Scholar 

  • Olaoluwa O, Moronkola D, Taiwo O, Iganboh P (2018) Volatile oil composition, antioxidant and antimicrobial properties of Boerhavia erecta L. and Euphorbia hirta L. Trends Phytochem Res 2:171–178

    CAS  Google Scholar 

  • Olisekodiaka MJ, Igbeneghu CA, Onuegbu AJ, Oduru R, Lawal AO (2012) Lipid, lipoproteins, total antioxidant status and organ changes in rats administered high doses of cadmium chloride. Med Princ Pract 21:156–159

    CAS  Google Scholar 

  • Padilla MA, Elobeid M, Ruden DM, Allison DB (2010) An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int J Environ Res Public Health 7(9):3332–3347

    CAS  Google Scholar 

  • Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 234:44–50

    CAS  Google Scholar 

  • Perandones CE, Illera VA, Peckham D, Stunz LL, Ashman RF (1993) Regulation of apoptosis in vitro in mature murine spleen T cells. J Immunol 151:3521–3529

    CAS  Google Scholar 

  • Ping-Hsiao S, Chi-Tai Y, Gow-Chin Y (2007) Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55:9427–9435

    Google Scholar 

  • Pizzino G, Bitto A, Interdonato M, Galfo F, Irrera N, Mecchio A, Pallio G, Ramistella V, De Luca F, Minutoli L, Squadrito F, Altavilla D (2014) Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol 2:686–693

    CAS  Google Scholar 

  • Poulios E, Giaginis C, Vasios GK (2020) Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Med 86(4):224–238

    CAS  Google Scholar 

  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145

    Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399

    CAS  Google Scholar 

  • Renugadevi J, Prabu SM (2010) Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats. Exp Toxicol Pathol 62(5):471–481

    CAS  Google Scholar 

  • Russo A, Formisano C, Rigano D, Senatore F, Delfine S, Cardile V, Rosselli S, Bruno M (2013) Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 55:42–47

    CAS  Google Scholar 

  • Sanjeev S, Bidanchi RM, Murthy MK, Gurusubramanian G, Roy VK (2019) Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res Int 26(20):20631–20653

    CAS  Google Scholar 

  • Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R (2018) Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 9(25):17937–17950

    Google Scholar 

  • Satarug S (2018) Dietary Cadmium intake and its effects on kidneys. Toxics 6:15. https://doi.org/10.3390/toxics6010015

    Article  CAS  Google Scholar 

  • Senatore F, Apostolides AN, Piozz F (2004) Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. J Chromatogr A 1052:237–240

    CAS  Google Scholar 

  • Senatore F, Arnold NA, Piozzi F, Formisano C (2006) Chemical composition of the essential oil of Salvia microstegia Boiss. et Balansa growing wild in Lebanon. J Chromatogr A 1108:276–278

    CAS  Google Scholar 

  • Shen Y, Song X, Li L, Sun J, Jaiswal Y, Huang J, Liu C, Yang W, Williams L (2019) Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed Pharmacother 111:579–587

    CAS  Google Scholar 

  • Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV (2018a) Gut as a target for cadmium toxicity. Environ Pollut 235:429–434

    CAS  Google Scholar 

  • Tinkov AA, Filippini T, Ajsuvakovae OP, Skalnaya MG, Aasethf J, Bjørklundh G, Gatiatulinai ER, Popova EV, Nemereshinai ON, Huangk PT, Vinceti M, Skalny AV (2018b) Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260

    CAS  Google Scholar 

  • Tomac I, Šeruga M, Labuda J (2020) Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem 325:126787. https://doi.org/10.1016/j.foodchem.2020.126787

    Article  CAS  Google Scholar 

  • Topcu G (2006) Bioactive triterpenoids from Salvia species. J Nat Prod 69:482–487

    CAS  Google Scholar 

  • Turley AE, Zagorski JW, Kennedy RC, Freeborn RA, Bursley JK, Edwards JR, Rockwell CE (2019) Chronic low-level cadmium exposure in rats affects cytokine production by activated T cells. Toxicol Res 8(2):227–237

    CAS  Google Scholar 

  • WHO World Health Organization (1992) Environmental health criteria 135. In Cadmium-environmental aspects; World Health Organization: Geneva, Switzerland

  • Winiarska-Mieczan A (2018) Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals 31(6):909–926

    CAS  Google Scholar 

  • Zhang L, Wang Y, Xu M, Wu DM, Chen JH (2014) Quantification of gallic acid and ellagic acid from the seed of Cornus officinalis by UHPLC method and their antioxidant activity. Chem Eng Commun 201:4. https://doi.org/10.1080/00986445.2013.780165

    Article  CAS  Google Scholar 

  • Zhao D, Sun J, Sun B, Zhao M, Zheng F, Huang M, Li H (2017) Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: three components in Chinese Baijiu. RSC Adv 7(73):46395–46405

    CAS  Google Scholar 

  • Zhou Z, Wang C, Liu H, Huang Q, Wang M, Le Y (2013) Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells. Int Med Sci 10:1485–1496

    Google Scholar 

  • Zhu MK, Li HY, Bai LH, Wang LS, Zou XT (2020) Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult Sci 99(6):3215–3228

    CAS  Google Scholar 

Download references

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes used during the current study are available from the corresponding author on reasonable request.

Funding

This work was supported by the National Research Centre, Dokki, Cairo, Egypt, project # 12050305.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. Authors HM Rashwan, HE Mohammed, AA El-Nekeety, and ZK Hamza carried out the experimental work and the biochemical analysis. Author SH Abdel-Azeim carried out the genetic analysis. Author NS Hassan carried out the histological part. Author MA Abdel-Wahhab wrote the protocol, managed the project, managed the analyses of the study, performed the statistical analysis, and wrote the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mosaad A. Abdel-Wahhab.

Ethics declarations

Ethics approval

The protocol of the current study was approved by the ethics Animal Care and Use Committee of the National research Center, Dokki, Cairo, Egypt (approval # 12050305/2019).

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashwan, .M., Mohammed, H.E., El-Nekeety, A.A. et al. Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats. Environ Sci Pollut Res 28, 68498–68512 (2021). https://doi.org/10.1007/s11356-021-15407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15407-y

Keywords

Navigation