Skip to main content

Advertisement

Log in

Effect of diurnal temperature change on cardiovascular risks differed under opposite temperature trends

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Temperature change between neighboring days (TCN) is an important trigger for cardiovascular diseases, but the modulated effects by seasonal temperature trends have been barely taken into account. A quantified comparison between impacts of positive TCNs (temperature rise) and negative situations (temperature drop) is also needed. We evaluated the associations of TCNs with emergency room (ER) visits for coronary heart disease (CHD) and cerebral infarction (CI) in Beijing, China, from 2008 to 2012. A year was divided into two segments dominated by opposite temperature trends, quasi-Poisson regression with distributed lag nonlinear models estimating TCN-morbidity relations were employed, separately for each period. High morbidities of CHD and CI both occurred in transitional seasons accompanied by large TCNs. Under warming backgrounds, positive TCNs increased CHD risk in patients younger than 65 years, and old people showed limited sensitivity. In the cooling periods, negative TCNs induced CHD risk in females and the elderly; the highest RR showed on lag 6 d. In particular, a same diurnal temperature decrease (e.g., − 2°C) induced greater RR (RR = 1.113, 95% CIs: 1.033–1.198) on old people during warming periods than cooling counterparts (RR = 1.055, 95% CIs: 1.011–1.100). Moreover, positive TCNs elevated CI risk regardless of background temperatures, and males were particularly vulnerable. Seasonal temperature trends modify TCN-cardiovascular morbidity associations significantly, which may provide new insights into the health impact of unstable weathers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of supporting data

Applications for data use have been submitted to relevant hospitals and have been approved, and a confidentiality agreement has also been signed.

Abbreviations

TCN:

Temperature change between neighboring days

CHD:

Coronary heart disease

CI:

Cerebral infarction

ER:

Emergency room

DLNM:

Distributed lag nonlinear model

GAM:

Generalized additive model

RR:

Relative risk

T:

Daily mean temperature

DTR:

Daily temperature range

RH:

Relative humidity

P:

Surface air pressure

SO2 :

Sulfur dioxide

NO2 :

Nitrogen dioxide

PM10 :

Inhalable particles with particle size less than 10 microns

References

  • Ausman JI, McCormick PW, Stewart M, Lewis G, Dujovny M, Balakrishnan G, Malik GM, Ghaly RF (1993) Cerebral oxygen metabolism during hypothermic circulatory arrest in humans. J Neurosurg 79(6):810–815

    Article  CAS  Google Scholar 

  • Baccini M, Kosatsky T, Analitis A (2011) Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. J Epidemiol Community Health 65(1):64–70

    Article  CAS  Google Scholar 

  • Barnett AG, Dobson AJ, McElduff P, Salomaa V, Kuulasmaa K, Sans S, WHO MONICA Project (2005) Cold periods and coronary events: an analysis of populations worldwide. J Epidemiol Community Health 59(7):551–557

    Article  Google Scholar 

  • Bean WBMC (1938) Coronary occlusion, heart failure and environmental temperatures. Am Heart J 16(6):701–713

    Article  Google Scholar 

  • Buguet A (2007) Sleep under extreme environments: effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci 262:145–152

    Article  Google Scholar 

  • Carder M, McNamee R, Beverland I, Elton R, Cohen G, Boyd J, Agius RM (2005) The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. Occup Environ Med 62:702–710

    Article  CAS  Google Scholar 

  • Castillo J, Martinez F, Leira R, Prieto JMM, Lema M, Noya M (1994) Mortality and morbidity of acute cerebral infarction related to temperature and basal analytic parameters. Cerebrovasc Dis 4(2):66–71

    Article  Google Scholar 

  • Chang CL, Shipley M, Marmot M, Poulter N (2004) Lower ambient temperature was associated with an increased risk of hospitalization for stroke and acute myocardial infarction in young women. J Clin Epidemiol 57(7):749–757

    Article  Google Scholar 

  • Chapman RM (1952) Solar-terrestrial relationships. Science. 116(3005):3

    Article  CAS  Google Scholar 

  • Cheng J, Zhu R, Xu Z, Xu X, Wang X, Li K, Su H (2014) Temperature variation between neighboring days and mortality: a distributed lag non-linear analysis. Int J Public Health 59(6):923–931

    Article  Google Scholar 

  • Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W et al (2019) Impacts of heat, cold, and temperature variability on mortality in Australia, 2000-2009. Sci Total Environ 651:2558–2565

    Article  CAS  Google Scholar 

  • Cowperthwaite MC, Burnett MG (2011) An analysis of admissions from 155 United States hospitals to determine the influence of weather on stroke incidence. J Clin Neurosci 18(5):618–623

    Article  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermo-regulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159

    Article  CAS  Google Scholar 

  • Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 303:235–241

    Article  CAS  Google Scholar 

  • Garrett AT, Goosens NG, Rehrer NJ, Patterson MJ, Cotter JD (2009) Induction and decay of short-term heat acclimation. Eur J Appl Physiol 107:659–670

    Article  Google Scholar 

  • Garrett AT, Rehrer NJ, Patterson MJ (2011) Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med 41:757–771

    Article  Google Scholar 

  • Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43:1–20

    Article  Google Scholar 

  • Gasparrini A, Armstrong B (2010) Time series analysis on the health effects of temperature: advancements and limitations. Environ Res 110(6):633–638

    Article  CAS  Google Scholar 

  • Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, de Sario M, Bell ML, Guo YLL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375

    Article  Google Scholar 

  • Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V, Tong S, de Sousa Zanotti Stagliorio Coelho M, Nascimento Saldiva PH, Lavigne E, Matus Correa P, Valdes Ortega N, Kan H, Osorio S, Kyselý J, Urban A, Jaakkola JJK, Ryti NRI, Pascal M, Goodman PG, Zeka A, Michelozzi P, Scortichini M, Hashizume M, Honda Y, Hurtado-Diaz M, Cesar Cruz J, Seposo X, Kim H, Tobias A, Iñiguez C, Forsberg B, Åström DO, Ragettli MS, Guo YL, Wu CF, Zanobetti A, Schwartz J, Bell ML, Dang TN, van DD, Heaviside C, Vardoulakis S, Hajat S, Haines A, Armstrong B (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1(9):e360–e367

    Article  Google Scholar 

  • GBD 2016 DALYs and HALE Collaborators (2017) Global, regional, and national disability adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390:1260–1344

    Article  Google Scholar 

  • GBD 2017 Causes of Death Collaborators (2018) Global, regional, and national age sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392:1736–1788

    Article  Google Scholar 

  • Guo Y, Barnett AG, Yu W, Pan X, Ye X, Huang C, Tong S (2011) A large change in temperature between neighboring days increases the risk of mortality. PLoS One 6(2):e16511

    Article  CAS  Google Scholar 

  • Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, de Sousa Zanotti Stagliorio Coelho M, Leone M, Pan X, Tong S, Tian L, Kim H, Hashizume M, Honda Y, Guo YLL, Wu CF, Punnasiri K, Yi SM, Michelozzi P, Saldiva PHN, Williams G (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 25:781–789

    Article  Google Scholar 

  • Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MSZS, Pan X, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Zanobetti A, Schwartz JD, Bell ML, Overcenco A, Punnasiri K, Li S, Tian L, Saldiva P, Williams G, Tong S (2016) Temperature variability and mortality: a multi-country study. Environ Health Perspect 124:1554–1559

    Article  Google Scholar 

  • Guo P, Zheng M, Wang Y, Feng W, Wu J, Deng C et al (2017) Effects of ambient temperature on stroke hospital admissions: results from a time-series analysis of 104,432 strokes in Guangzhou, China. Sci Total Environ 580:307–315

    Article  CAS  Google Scholar 

  • Hajat S, O’Connor M, Kosatsky T (2010) Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet. 375:856–863

    Article  Google Scholar 

  • Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2010) Associations between outdoor temperature and markers of inflammation: a cohort study. Environ Health 9:42

    Article  Google Scholar 

  • Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2011) Outdoor temperature is associated with serum HDL and LDL. Environ Res 111:281–287

    Article  CAS  Google Scholar 

  • Hastie T, Tibshirani R (1995) Generalized additive models for medical research. Stat Methods Med Res 4(3):187–196

    Article  CAS  Google Scholar 

  • Hong YC, Rha JH, Lee JT, Ha EH, Kwon HJ, Kim H (2003) Ischemic stroke associated with decrease in temperature. Epidemiology. 14(4):473–478

    Article  Google Scholar 

  • Hu K, Guo Y, Yang X, Zhong J, Fei F, Chen F, Zhao Q, Zhang Y, Chen G, Chen Q, Ye T, Li S, Qi J (2019) Temperature variability and mortality in rural and urban areas in Zhejiang province, China: an application of a spatiotemporal index. Sci Total Environ 647:1044–1051

    Article  CAS  Google Scholar 

  • Kan H, London SJ, Chen H, Song G, Chen G, Jiang L, Zhao N, Zhang Y, Chen B (2007) Diurnal temperature range and daily mortality in Shanghai, China. Environ Res 103:424–431

    Article  CAS  Google Scholar 

  • Kang L, Chen W, Wang L (2009) Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature. Clim Environ Res 14(1):45–53

    Google Scholar 

  • Kato N, Hasegawa T, Iizuka H, Kato T, Yamamoto T, Torii J (2018) Meteorological factors that affect stroke onset. No Shinkei Geka 46(6):481–489

    Google Scholar 

  • Leathers D, Palecki M, Robinson D, Dewey K (1998) Climatology of the daily temperature range annual cycle in the United States. Clim Res 9(3):197–211

    Article  Google Scholar 

  • Lei X, Liu L, Chen R, Liu C, Hong J, Cao L, Lu Y, Dong X, Chen X, Qiu X, Xia M, Ding B, Qian L, Wang L, Zhou W, Gui Y, Kan H, Zhou Y, Zhang X (2020) Temperature changes between neighboring days and childhood asthma: a seasonal analysis in Shanghai, China. Int J Biometeorol. https://doi.org/10.1007/s00484-020-02057-x

  • Li K, Ni H, Yang Z, Wang Y, Ding S, Wen L, Yang H, Cheng J, Su H (2016) Effects of temperature variation between neighbouring days on daily hospital visits for childhood asthma: a time-series analysis. Public Health 136:133–140

    Article  CAS  Google Scholar 

  • Lim YH, Reid CE, Mann JK, Jerrett M, Kim H (2015) Diurnal temperature range and short-term mortality in large US communities. Int J Biometeorol 59:1311–1319

    Article  Google Scholar 

  • Lin H, Zhang Y, Xu Y, Xu X, Liu T, Luo Y, Xiao J, Wu W, Ma W (2013) Temperature changes between neighboring days and mortality in summer: a distributed lag non-Linear time series analysis. PLoS One 8(6):e66403

    Article  CAS  Google Scholar 

  • Liu L, Breitner S, Pan X, Franck U, Leitte AM, Wiedensohler A, von Klot S, Wichmann HE, Peters A, Schneider A (2011) Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis. Environ Health 10:51

    Article  Google Scholar 

  • Ma Y, Chen W (2019) Introduction to the 2018 Chinese cardiovascular disease report. Chin J Hypertens 27(8):712–716

    Google Scholar 

  • Ma P, Zhou J, Wang S, Li T, Fan X, Fan J, Xie J (2018) Differences of hemorrhagic and ischemic strokes in age spectra and responses to climatic thermal conditions. Sci Total Environ 644:1573–1579

    Article  CAS  Google Scholar 

  • Ma P, Wang S, Zhou J, Li T, Fan X, Fan J, Wang S (2020a) Meteorological rhythms of respiratory and circulatory diseases revealed by Harmonic Analysis. Heliyon. 6:e04034

    Article  Google Scholar 

  • Ma Y, Jiao H, Zhang Y, Cheng B, Feng F, Yu Z, Ma B (2020b) Impact of temperature changes between neighboring days on COPD in a city in Northeast China. Environ Sci Pollut Res Int 27(5):4849–4857

    Article  Google Scholar 

  • Martinez-Nicolas A, Meyer M, Hunkler S, Madrid JA, Rol MA, Meyer AH, Schötzau A, Orgül S, Kräuchi K (2015) Daytime variation in ambient temperature affects skin temperatures and blood pressure: ambulatory winter/summer comparison in healthy young women. Physiol Behav 149:203–211

    Article  CAS  Google Scholar 

  • Miller RR, Sales AE, Kopjar B, Fihn SD, Bryson CL (2005) Adherence to heart-healthy behaviors in a sample of the U.S. population. Prev Chronic Dis 2(2):A18

    Google Scholar 

  • Modesti PA (2013) Season, temperature and blood pressure: a complex interaction. Eur J Intern Med 24(7):604–607

    Article  Google Scholar 

  • Mosca L, Barrett-Connor E, Kass WN (2011) Sex/Gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 124(19):2145–2154

    Article  Google Scholar 

  • Priestley CHB (1956) Heat convection from the Earth's surface. Nature. 177(4505):435–436

    Article  Google Scholar 

  • Qian C, Wu ZH, Fu C, Zhou T (2010) On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv Atmos Sci 27:1169–1182

    Article  Google Scholar 

  • Rakers F, Schiffner R, Rupprecht S, Brandstadt A, Witte OW, Walther M et al (2016) Rapid weather changes are associated with increased ischemic stroke risk: a case-crossover study. Eur J Epidemiol 31(2):137–146

    Article  Google Scholar 

  • Rothwell PM, Wroe SJ, Slattery J, Warlow CP (1996) Is stroke incidence related to season or temperature? The Oxfordshire Community Stroke Project. Lancet. 347(9006):934–936

    Article  CAS  Google Scholar 

  • Sciomer S, Moscucci F, Dessalvi CC, Deidda M, Mercuro G (2018) Gender differences in cardiology: is it time for new guidelines? J Cardiovasc Med 19(12):685–688

    Article  Google Scholar 

  • Seretakis D, Lagiou P, Lipworth L, Signorello LB, Rothman KJ, Trichopoulos D (1997) Changing seasonality of mortality from coronary heart disease. JAMA. 278(12):1012–1014

    Article  CAS  Google Scholar 

  • Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, Tian J, Shang K (2017) Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ 586:241–254

    Article  CAS  Google Scholar 

  • Tian Z, Li S, Zhang J, Jaakkola JJ, Guo Y (2012) Ambient temperature and coronary heart disease mortality in Beijing, China: A time series study. Environ Health 11(1):56

    Article  Google Scholar 

  • Wang QZ, Gao CL, Wang HC, Lang LL, Yue T, Lin HL (2013) Ischemic stroke hospital admission associated with ambient temperature in Jinan, China. PLoS One 8(11):e80381

    Article  Google Scholar 

  • Wang X, Jiang Y, Bai Y, Pan C, Wang R, He M, Zhu J (2020) Association between air temperature and the incidence of acute coronary heart disease in Northeast China. Clin Interv Aging 15:47–52

    Article  Google Scholar 

  • Watts N, Adger PWN, Agnolucci P, Blackstock J, Byass P, Cai W et al (2015) Health and climate change: policy response to protect public health. Lancet. 386(10006)

  • Wolf K, Schneider A, Breitner S, Klot S, Meisinger C, Cyrys J et al (2009) Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation. 120(9):735–742

    Article  Google Scholar 

  • Xiao YW, Barnett AG, Hu W, Tong S (2009) Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996-2005. Int J Biometeorol 53(6):535

    Article  Google Scholar 

  • Yang J, Zhou M, Li M, Yin P, Wang B, Pilot E, Liu Y, van der Hoek W, van Asten L, Krafft T, Liu Q (2018) Diurnal temperature range in relation to death from stroke in China. Environ Res 164:669–675

    Article  CAS  Google Scholar 

  • Yi W, Zhang X, Pan R, Wei Q, Gao J, Xu Z, Duan J, Su H (2019) Quantifying the impacts of temperature variability on hospitalizations for schizophrenia: a time series analysis in Hefei, China. Sci Total Environ 696:133927

    Article  CAS  Google Scholar 

  • Zhan Z, Zhao Y, Pang S, Zhong X, Wu C, Ding Z (2017) Temperature change between neighboring days and mortality in United States: a nationwide study. Sci Total Environ 584-585:1152–1161

    Article  CAS  Google Scholar 

  • Zhang Y, Yu C, Bao J, Li X (2017) Impact of temperature variation on mortality: an observational study from 12 counties across Hubei Province in China. Sci Total Environ 587(196):e203

    Google Scholar 

  • Zhang Y, Yu Y, Peng M, Meng R, Hu K, Yu C et al (2018) Temporal and seasonal variations of mortality burden associated with hourly temperature variability: a nationwide investigation in England and Wales. Environ Int 115:325–333

    Article  CAS  Google Scholar 

  • Zhang Y, Xiang Q, Yu C, Bao J, Ho H, Sun S et al (2019) Mortality risk and burden associated with temperature variability in China, United Kingdom and United States: comparative analysis of daily and hourly exposure metrics. Environ Res 179:108771

    Article  CAS  Google Scholar 

  • Zhao Q, Coelho MSZS, Li S, Saldiva PHN, Hu K, Abramson MJ, Huxley RR, Guo Y (2019) Temperature variability and hospitalization for cardiac arrhythmia in Brazil: a nationwide case-crossover study during 2000-2015. Environ Pollut 246:552–558

    Article  CAS  Google Scholar 

  • Zheng Z, Ding H, Fan S (2011) Characteristics of climate warming and extreme temperature indices in Beijing over 1960-2008. Adv Clim Chang Res 7(3):189–196

    Google Scholar 

Download references

Funding

This research was supported by the National key Research and Development Program of China (2016YFA0602004), Ministry of Science and Technology of the People’s Republic of China, China; the open fund of Shangluo Key Laboratory of Climate Adaptive City (SLSYS2019004), Shangluo Meteorological Bureau, China; the Special Project on Major Science and Technology of Sichuan Province (2018SZDZX0023), Sichuan & Technology Department of Sichuan Province, China; and the Chengdu University of Information Technology scientific research fund (KYTZ201811), Chengdu University of Information Technology, China.

Author information

Authors and Affiliations

Authors

Contributions

Ma Pan: Conceptualization, methodology, writing—original draft preparation

Zhang Ying: Conceptualization, data curation, writing—original draft preparation

Wang Xinzi: Software, validation, investigation

Fan Xingang: Writing—reviewing and editing, visualization

Chen Lei: Writing—reviewing and editing, investigation

Hu Qin: Writing—original draft preparation, visualization

Wang Shigong: Conceptualization, supervision

Li Tanshi: Resources, methodology

Corresponding author

Correspondence to Ma Pan.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors are in agreement with the content of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Zhang contributed prominently to this article and should be considered a co-first author.

Supplementary Information

ESM 1

(DOCX 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Zhang, Y., Wang, X. et al. Effect of diurnal temperature change on cardiovascular risks differed under opposite temperature trends. Environ Sci Pollut Res 28, 39882–39891 (2021). https://doi.org/10.1007/s11356-021-13583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13583-5

Keywords

Navigation