Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantitative investigation of ZnO nanoparticle dissolution in the presence of δ-MnO2

  • 14 Accesses


The widespread use of zinc oxide nanoparticles (ZnO NPs), the second most produced nanomaterial, inevitably leads to their release into the environment. In this study, dissolution and transformation of ZnO NPs in the presence of δ-MnO2, an abundant and ubiquitous manganese (Mn) oxide mineral, was investigated via a suite of techniques covering bulk to molecular scales. Dissolution kinetics indicated that the presence of δ-MnO2 significantly affected ZnO NP dissolution rate/trend and equilibrium Zn2+ concentration, which were found to be mainly dependent on the concentration and mass ratio of ZnO NPs and δ-MnO2. Approximately 300 mg ZnO NPs per g δ-MnO2 was expected for ZnO NP uptake at pH 7.0 via ZnO NP dissolution and surface Zn2+ adsorption. X-ray diffraction (XRD), ζ potential, high-resolution transmission electron microscopy (HR-TEM), and Zn K-edge X-ray absorption spectroscopy (XAS) results revealed that when the mole content of ZnO NPs was less than the total adsorption sites of δ-MnO2 surface, ZnO NPs were completely dissolved and adsorbed on δ-MnO2 surface in the form of inner-sphere complexes. A fraction of ZnO NPs persisted when the mole ratio of ZnO to δ-MnO2 further increased. These results suggest that the transformation and fate of ZnO NPs is affected by environment-relevant minerals such as Mn oxides due to their huge capacity of fixing dissolved metal cations at the surface or interlayer structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068. https://doi.org/10.1021/la200570n

  2. David CA et al (2012) Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J Phys Chem C116:11758–11767. https://doi.org/10.1021/jp301671b

  3. Eixenberger JE, Anders CB, Hermann RJ, Brown RJ, Reddy KM, Punnoose A, Wingett DG (2017) Rapid dissolution of ZnO nanoparticles induced by biological buffers significantly impacts cytotoxicity. Chem Res Toxicol 30:1641–1651. https://doi.org/10.1021/acs.chemrestox.7b00136

  4. Feng XH, Zhai LM, Tan WF, Liu F, He JZ (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut 147:366–373. https://doi.org/10.1016/j.envpol.2006.05.028

  5. Feng X et al (2016) Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate. Environ Sci Technol 50:5651–5660. https://doi.org/10.1021/acs.est.6b00268

  6. Gadde RR, Laitinen HA (1974) Heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem 46:2022–2026. https://doi.org/10.1021/ac60349a004

  7. García-Gómez C, Fernández MD, García S, Obrador AF, Letón M, Babín M (2018) Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environ Sci Pollut Res 25:28140–28152. https://doi.org/10.1007/s11356-018-2833-1

  8. Ginder-Vogel M, Landrot G, Fischel JS, Sparks DL (2009) Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS). Proc Natl Acad Sci 106:16124–16128. https://doi.org/10.1073/pnas.0908186106

  9. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. https://doi.org/10.1021/es9015553

  10. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. https://doi.org/10.1016/j.envpol.2013.06.003

  11. Grangeon S, Manceau A, Guilhermet J, Gaillot A-C, Lanson M, Lanson B (2012) Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochim Cosmochim Acta 85:302–313. https://doi.org/10.1016/j.gca.2012.02.019

  12. Gupta GS, Senapati VA, Dhawan A, Shanker R (2017) Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis. J Colloid Interface Sci 495:9–18. https://doi.org/10.1016/j.jcis.2017.01.101

  13. Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635. https://doi.org/10.1126/science.1141134

  14. Hrda K, Pouzar M, Knotek P (2018) Study of zinc oxide nanoparticles and zinc chloride toxicity to annelid Enchytraeus crypticus in modified agar-based media. Environ Sci Pollut Res 25:22702–22709. https://doi.org/10.1007/s11356-018-2356-9

  15. Huynh KA, McCaffery JM, Chen KL (2012) Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles: rates and mechanisms. Environ Sci Technol 46:5912–5920. https://doi.org/10.1021/es2047206

  16. Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49:11476–11484. https://doi.org/10.1021/acs.est.5b02406

  17. Joo SH, Zhao D (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J Hazard Mater 322:29–47. https://doi.org/10.1016/j.jhazmat.2016.02.068

  18. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70. https://doi.org/10.1021/ez400106t

  19. Keller AA, Vosti W, Wang H, Lazareva A (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16:2489–2410. https://doi.org/10.1007/s11051-014-2489-9

  20. Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351. https://doi.org/10.1016/S0025-3227(03)00122-1

  21. Lee S, Anderson PR (2005) EXAFS study of Zn sorption mechanisms on hydrous ferric oxide over extended reaction time. J Colloid Interface Sci 286:82–89. https://doi.org/10.1016/j.jcis.2005.01.005

  22. Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102. https://doi.org/10.1016/j.envpol.2012.10.026

  23. Liu Z, Wang C, Hou J, Wang P, Miao L, Lv B, Yang Y, You G, Xu Y, Zhang M, Ci H (2018) Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environ Sci Pollut Res 25:31240–31249. https://doi.org/10.1007/s11356-018-3123-7

  24. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899. https://doi.org/10.1021/es300839e

  25. Lu A, Li Y, Ding H, Xu X, Li Y, Ren G, Liang J, Liu Y, Hong H, Chen N, Chu S, Liu F, Li Y, Wang H, Ding C, Wang C, Lai Y, Liu J, Dick J, Liu K, Hochella MF Jr (2019) Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. P Natl Acad Sci 116:9741–9746. https://doi.org/10.1073/pnas.1902473116

  26. Lv J, Zhang S, Wang S, Luo L, Huang H, Zhang J (2014) Chemical transformation of zinc oxide nanoparticles as a result of interaction with hydroxyapatite. Colloids Surf A Physicochem Eng Asp 461:126–132. https://doi.org/10.1016/j.colsurfa.2014.07.036

  27. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85. https://doi.org/10.1016/j.envpol.2012.08.011

  28. Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environ Sci Technol 37:75–80. https://doi.org/10.1021/es025748r

  29. Miao A-J, Zhang X-Y, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010) Zinc oxide–engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822. https://doi.org/10.1002/etc.340

  30. Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403. https://doi.org/10.1021/la203542x

  31. Naidja A, Liu C, Huang PM (2002) Formation of protein–birnessite complex: XRD, FTIR, and AFM analysis. J Colloid Interface Sci 251:46–56. https://doi.org/10.1006/jcis.2002.8349

  32. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci U S A 96:3447–3454. https://doi.org/10.1073/pnas.96.7.3447

  33. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. https://doi.org/10.1107/S0909049505012719

  34. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

  35. Smith BM, Pike DJ, Kelly MO, Nason JA (2015) Quantification of heteroaggregation between citrate-stabilized gold nanoparticles and hematite colloids. Environ Sci Technol 49:12789–12797. https://doi.org/10.1021/acs.est.5b03486

  36. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. https://doi.org/10.1016/j.envpol.2013.10.004

  37. Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108 https://aem.asm.org/content/59/1/101.long

  38. Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, Madankumar A, Arunachalam P, Maiyalagan T, Kim HS (2019) A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30:392001. https://doi.org/10.1088/1361-6528/ab268a

  39. Tong T, Fang K, Thomas SA, Kelly JJ, Gray KA, Gaillard J-F (2014) Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environ Sci Technol 48:7924–7932. https://doi.org/10.1021/es501168p

  40. Tong T, Wilke CM, Wu J, Binh CTT, Kelly JJ, Gaillard J-F, Gray KA (2015) Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49:8113–8123. https://doi.org/10.1021/acs.est.5b02148

  41. Wan B, Yan Y, Liu F, Tan W, He J, Feng X (2016) Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: a comparative study with orthophosphate. Sci Total Environ 544:134–142. https://doi.org/10.1016/j.scitotenv.2015.11.157

  42. Wan B, Yan Y, Tang Y, Bai Y, Liu F, Tan W, Huang Q, Feng X (2017) Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles. Chemosphere 176:255–265. https://doi.org/10.1016/j.chemosphere.2017.02.134

  43. Wan B, Huang R, Diaz JM, Tang Y (2019a) Manganese oxide catalyzed hydrolysis of polyphosphates. ACS Earth Space Chem 3:2623–2634. https://doi.org/10.1021/acsearthspacechem.9b00220

  44. Wan B, Huang R, Diaz JM, Tang Y (2019b) Polyphosphate adsorption and hydrolysis on aluminum oxides. Environ Sci Technol 53:9542–9552. https://doi.org/10.1021/acs.est.9b01876

  45. Wan B, Yan Y, Huang R, Abdala DB, Liu F, Tang Y, Tan W, Feng X (2019c) Formation of Zn-Al layered double hydroxides (LDH) during the interaction of ZnO nanoparticles (NPs) with γ-Al2O3. Sci Total Environ 650:1980–1987. https://doi.org/10.1016/j.scitotenv.2018.09.230

  46. Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interf Sci 226:24–36. https://doi.org/10.1016/j.cis.2015.07.002

  47. Wang N, Tong TZ, Xie MW, Gaillard JF (2016) Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media. Nanotechnology 27(27):324001. https://doi.org/10.1088/0957-4484/27/32/324001

  48. Wu P, Cui P, Du H, Alves ME, Liu C, Zhou D, Wang Y (2019) Dissolution and transformation of ZnO nano- and microparticles in soil mineral suspensions. ACS Earth Space Chem 3:495–502. https://doi.org/10.1021/acsearthspacechem.8b00165

  49. Zhao S et al (2018) Effect of Zn coprecipitation on the structure of layered Mn oxides. Chem Geol 493:234–245. https://doi.org/10.1016/j.chemgeo.2018.05.044

Download references


This research is supported by the National Natural Science Foundation of China (grant nos. 41603100 and 41471194) and the Fundamental Research Funds for the Central Universities (no. 2662017PY070). B. W. thanks the financial support from China Scholarship Council (CSC) under grant no. 201606760059.

Author information

Correspondence to Xionghan Feng.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Thomas D. Bucheli

Electronic supplementary material


(DOCX 1661 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, B., Hu, Z., Yan, Y. et al. Quantitative investigation of ZnO nanoparticle dissolution in the presence of δ-MnO2. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-07965-4

Download citation


  • ZnO nanoparticles
  • δ-MnO2
  • Dissolution
  • Adsorption
  • XAS