Improving ozonation to remove carbamazepine through ozone-assisted catalysis using different NiO concentrations

  • Claudia M. Aguilar
  • Jorge Vazquez-Arenas
  • Omar O. Castillo-Araiza
  • Julia L. RodríguezEmail author
  • Isaac Chairez
  • Eric Salinas
  • Tatiana Poznyak
Advanced Oxidation Processes: Recent Achievements and Perspectives


The carbamazepine (CBZ) abatement is herein evaluated using catalytic ozonation at different NiO concentrations as catalyst: 100, 300, and 500 mg L−1, revealing its total destruction after 5 min of reaction either by conventional or catalytic ozonation. The NiO incorporation in the reactor does not increase the destruction rate, but the catalyst presence enhances the partial mineralization of the contaminant by conversion into oxalic and formic acids and the removal of total organic carbon (TOC) associated with the formation of oxidant species such as hydroxyl radical. Evidence for this behavior is the accumulation rate of the above acids which rise proportionally to the NiO concentration. The highest NiO concentration (500 mg L−1) reached a maximum TOC removal of 79.2%, which exceeds by 50% the outcome of the conventional treatment. The accumulation-decomposition profiles of oxalic and formic acids suggest the occurrence of simultaneous reaction mechanisms (hydroxyl radicals and complex formations) on the catalyst during CBZ ozonation. According to XPS analysis, the presence of nitrogen species in the NiO-ozonated was attributable to byproducts of CBZ decomposition. The toxicity bioassay based on Lactuca sativa seeds demonstrate that ozonated samples attained similar plant germination than the reference substance (water) after 120 min of treatment. This result is comparable with or without the catalyst presence, indicating the formation of non-toxic accumulated byproducts at the end of the ozonation reaction.


Carbamazepine Catalytic ozonation Hydroxyl radicals NiO Lactuca sativa toxicity 



C. Aguilar thanks CONACYT for the economic support to pursue postdoctoral studies.

Funding information

This work is Apoyado por el Fondo Sectorial de Investigación para la Educación (CONACYT Projects: A1-S-21608, A1-S-30591) and Instituto Politécnico Nacional (SIP projects: 20191559, 20195237, 20191745).

Supplementary material

11356_2020_7883_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 26 kb)


  1. Aguilar CM, Chairez I, Rodríguez JL, Tiznado H, Santillán R, Arrieta D, Poznyak T (2019) Inhibition effect of ethanol in naproxen degradation by catalytic ozonation with NiO. RSC Adv 9:14822–14833CrossRefGoogle Scholar
  2. Ali F, Khan JA, Shah NS, Sayed M, Khan HM (2018) Carbamazepine degradation by UV and UV-assisted AOPs : Kinetics , mechanism and toxicity investigations. Process Saf Environ Prot 117:307–314CrossRefGoogle Scholar
  3. Baena-Nogueras RM, González-Mazo E, Lara-Martín PA (2017) Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Sci Total Environ 590–591:643–654CrossRefGoogle Scholar
  4. Beltran FJ, Rivas FJ, Montero-de-Espinosa R (2003) Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 1 . homogeneous catalytic ozonation. Ind Eng Chem Res 42:3210–3217CrossRefGoogle Scholar
  5. Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332CrossRefGoogle Scholar
  6. Brezina E, Prasse C, Meyer J, Mückter H, Ternes TA (2017) Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle. Environ Pollut 225:261–269CrossRefGoogle Scholar
  7. Chan-keb CA, Agraz-Hernández CM, Perez-Balan RA, Gómez-Solano MI, Maldonado-Montien TDNJ, Ake-Canche B, Gutiérrez-Alcántar EJ (2018) Acute toxicity of water and aqueous extract of soils from Champotón river in Lactuca sativa L. Toxicol Rep 5:593–597CrossRefGoogle Scholar
  8. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954CrossRefGoogle Scholar
  9. Ding T, Lin K, Yang B, Yang M, Li J (2019) Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as in fluenced by humic acid and nitrogen species. J Hazard Mater 378:120763CrossRefGoogle Scholar
  10. Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contaminants 3:1–16CrossRefGoogle Scholar
  11. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642CrossRefGoogle Scholar
  12. Gomes J, Costa R, Quinta-ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283CrossRefGoogle Scholar
  13. Gonçalves AG, Órfão JJM, Pereira MFR (2012) Catalytic ozonation of sulphamethoxazole in the presence of carbon materials : catalytic performance and reaction pathways. J Hazard Mater 239–240:167–174CrossRefGoogle Scholar
  14. Hübner U, Seiwert B, Reemtsma T, Jekel M (2014) Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment – indications from column experiments. Water Res 49:34–43CrossRefGoogle Scholar
  15. Im J-K, Cho I-H, Kim S-K, Zoh K-D (2012) Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination 285:306–314CrossRefGoogle Scholar
  16. Kim KA, Oh SO, Park PW, Park JY (2005) Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol 61:275–280CrossRefGoogle Scholar
  17. Komtchou S, Dirany A, Drogui P, Bermond A (2015) Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Environ Sci Pollut Res 22:11513–11525CrossRefGoogle Scholar
  18. Ling L, Zhang D, Fan C, Shang C (2017) A Fe ( II )/ citrate / UV / PMS process for carbamazepine degradation at a very low Fe ( II )/ PMS ratio and neutral pH : the mechanisms. Water Res 124:446–453CrossRefGoogle Scholar
  19. Liu J, Ke L, Liu J, Sun L, Yuan X, Li Y, Xia D (2019) Enhanced catalytic ozonation towards oxalic acid degradation over novel copper doped manganese oxide octahedral molecular sieves nanorods. J Hazard Mater 371:42–52CrossRefGoogle Scholar
  20. Magallanes D, Rodrıguez JL, Poznyak T, Valenzuela MA, Lartundo L, Chairez I (2015) Efficient mineralization of benzoic and phthalic acids in water by catalytic ozonation using a nickel oxide catalyst. New J Chem 39:7839–7848CrossRefGoogle Scholar
  21. Mazzitelli J, Budzinski H, Cachot J, Geffard O, Marty P, Chiffre A, Francois A, Bonnafe E, Geret F (2018) Evaluation of psychiatric hospital wastewater toxicity : what is its impact on aquatic organisms ? Environ Sci Pollut Res 25:26090–26102CrossRefGoogle Scholar
  22. McDowell DC, Huber MM, Wagner M, Von Gunten U, Ternes TA (2005) Ozonation of carbamazepine in drinking water : identification and kinetic study of major oxidation products. Environ Sci Technol 39:8014–8022CrossRefGoogle Scholar
  23. Monsalvo VM, Lopez J, Munoz M, de Pedro ZM, Casas JA, Mohedano AF, Rodriguez JJ (2015) Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chem Eng J 264:856–862CrossRefGoogle Scholar
  24. Nkoom M, Lu G, Liu J, Yang H, Dong H (2019) Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. Ecotoxicol Environ Saf 172:11–18CrossRefGoogle Scholar
  25. Rodríguez JL, Valenzuela MA, Poznyak T, Lartundo L, Chairez I (2013) Reactivity of NiO for 2,4-D degradation with ozone: XPS studies. J Hazard Mater 262:472–481CrossRefGoogle Scholar
  26. Rosal R, Rodríguez A, Gonzalo MS, García-Calvo E (2008) Catalytic ozonation of naproxen and carbamazepine on titanium dioxide. Appl Catal B Environ 84:48–57CrossRefGoogle Scholar
  27. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Dedicated to professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. Water Res 32:3245–3260CrossRefGoogle Scholar
  28. Wang S, Wang J (2017) Carbamazepine degradation by gamma irradiation coupled to biological treatment. J Hazard Mater 321:639–646CrossRefGoogle Scholar
  29. Wang S, Wang J (2019) Oxidative removal of carbamazepine by peroxymonosulfate (PMS) combined to ionizing radiation : degradation, mineralization and biological toxicity. Sci Total Environ 658:1367–1374CrossRefGoogle Scholar
  30. Zhang Y, Geißen S, Gal C (2008) Carbamazepine and diclofenac : removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161CrossRefGoogle Scholar
  31. Zhang X, Li X, Qin W (2009) Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles. Chem Phys Lett 479:310–315CrossRefGoogle Scholar
  32. Zhang T, Chu S, Li J, Wang L, Chen R, Shao Y, Liu X, Ye M (2017) Efficient degradation of aqueous carbamazepine by bismuth oxybromide-activated peroxide oxidation. Catalysts 7(11):315–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratory of Catalytic Reactor Engineering applied to Chemical and Biological Systems (LCRE). Departamento de Ingeniería de Procesos e HidráulicaUniversidad Autónoma Metropolitana-ItzapalapaCiudad de MexicoMexico
  2. 2.Conacyt - Departamento de QuímicaUniversidad Autónoma Metropolitana - IztapalaCiudad de MexicoMexico
  3. 3.Lab. Ing. Química AmbientalESIQIE-Instituto Politécnico NacionalCiudad de MexicoMexico
  4. 4.Departamento de BioprocesosUPIBI-Instituto Politécnico NacionalCiudad de MexicoMexico

Personalised recommendations