Guest-host complexes of 1-iodochlordecone and β-1-iodo-pentachlorocyclohexane with cyclodextrins as radiotracers of organochlorine pesticides in polluted water

  • Ulises Jáuregui-HazaEmail author
  • Anthuan Ferino-Pérez
  • Juan José Gamboa-Carballo
  • Sarra Gaspard
Environmental and human health issues related to long term contamination by chlordecone in the French West Indies


The chlordecone (CLD) and the β-hexachlorocyclohexane (β-HCH) are persistent organic pollutants with a great environmental stability that cause severe affectations to health. The concentration of these pesticides in the environment is low, which represent a problem for their determination, even for the modern analytical methods. The labeling of these compounds with an iodine radioisotope for their use as radiotracers is a potential solution to this problem. The present work studies the interaction of 1-iodochlordecone (I-CLD) and β-1-iodo-pentachlorocyclohexane (I-β-HCH) with cyclodextrins (CDs), during the formation of molecular inclusion complexes pesticide@CDs. The methodology of multiple minima hypersurfaces, quantic calculations based on density functional theory and a topologic study of electronic density were used to corroborate the stability of I-CLD@CDs and I-β-HCH@CDs complexes. Three main types of guest-host complexes in relation to the occlusion grade were observed: with total occlusion, with partial occlusion and external interaction without occlusion. The more stable complexes are obtained when the γ-CD is the host molecule. The formed complexes with radiolabelled pollutants are analogous with the ones reported in previous works. These results confirm the utility of these complexes for the removal of organochlorine pesticides from polluted water and, also, demonstrate the possibility of using the I-CLD and the I-β-HCH as possible radiotracers for these pollutants in further studies with environmental proposes.


Labelled organochlorine pesticides Host-guest complexes Radiotracers Multiple minima hypersurfaces Density functional theory Quantum theory of atoms in molecules 



Computational calculations were performed using Wahoo, the cluster of the Centre Commun de Calcul Intensif of the Université des Antilles, Guadeloupe, France. The authors wish to thank Raphael Pasquier, Jacques Laminie and Pascal Poullet for their support with the calculation facilities. The Informatics service of InSTEC at Havana, Cuba, is also gratefully acknowledged. AFP thanks the Cooperation Service of the French Embassy in Cuba for supporting his stay in Guadeloupe.

Funding information

The financial support was from the project CIMPest (CBA-330810-2018-P-1, INTEC, Dominican Republic) and project TATARCOP (InSTEC, Cuba).

Supplementary material

11356_2020_7862_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)


  1. Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41:476–486CrossRefGoogle Scholar
  2. Arkas M, Allabashi R, Tsiourvas D, Mattausch EM, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol. 40:2771–2777CrossRefGoogle Scholar
  3. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  4. Bader RFW (2010) The density in density functional theory. J Mol Struct 943:2–18CrossRefGoogle Scholar
  5. Baldwin RM (1986) Chemistry of radioiodine. Int J Rad Appl Instr A 37:817–821CrossRefGoogle Scholar
  6. Benfeito S, Rodrigues T, Garrido J, Borges F, Garrido EM (2013) Host-guest interaction between herbicide oxadiargyl and hydroxypropyl-β-cyclodextrin. Scientific World J 2013. CrossRefGoogle Scholar
  7. Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. John Wiley & Sons, Inc., Hoboken, pp 440Google Scholar
  8. Brahmkshatriya PS, Dobeš P, Fanfrlík J, Paruch K, Bronowska A, Lepšík M, Hobza P (2013) Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo [1, 5-a] pyrimidines. Curr Comput-Aided Drug Des 9(1):118–129CrossRefGoogle Scholar
  9. Browne E, Firestone RB, Shirley VS (1986) Table of radioactive isotopes. John Wiley & Sons, Inc., Hoboken, pp 1050Google Scholar
  10. Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157:1697–1705CrossRefGoogle Scholar
  11. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. J Phys Chem A 105:8111–8116CrossRefGoogle Scholar
  12. Clostre F, Cattan P, Gaude JM, Carles C, Letourmy P, Lesueur-Jannoyer M (2015) Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants. Sci Total Environ 532:292–300CrossRefGoogle Scholar
  13. Codorniu-Hernández E, Mesa-Ibirico A, Hernández-Santiesteban R, Montero-Cabrera LA, Martínez-Luzardo F, Santana-Romero JL, Borrmann T, Stohner W-D (2005) Essential amino acids interacting with flavonoids: a theoretical approach. Int J Quantum Chem 103:82–104CrossRefGoogle Scholar
  14. Cruickshank DL, Rougier NM, Maurel VJ, Rossi RH, Buján EI, Bourne SA, Caira MR (2013) Permethylated b-cyclodextrin/pesticide complexes: X-ray structures and thermogravimetric assessment of kinetic parameters for complex dissociation. J Incl Phenom Macrocycl Chem 75:47–56CrossRefGoogle Scholar
  15. Cruz-Gonzalez G, Julcour C, Chaumat H, Bourdon V, Ramon-Portugal F, Gaspard S, Jauregui-Haza UJ, Delmas H (2018) Degradation of chlordecone and beta-hexachlorocyclohexane by photolysis, (photo-)Fenton oxidation and ozonation. J. Environ. Sci. Health. Part B 53:121–125Google Scholar
  16. Della Rossa P, Jannoyer M, Mottes C, Plet J, Bazizi A, Arnaud L, Jestin A, Woignier T, Gaude JM, Cattan P (2017) Linking current river pollution to historical pesticide use: insights for territorial management? Sci Total Environ 574CrossRefGoogle Scholar
  17. Duca G, Boldescu V (2008) Cyclodextrins – fields of application. Part I Chem J Mold Gen Ind Eco Chem 3:30–37Google Scholar
  18. Durimel A, Altenor S, Miranda-Quintana R, Couespel Du Mesnil P, Jauregui-Haza U, Gadiou R, Gaspard S (2013) pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chem Eng J 229:239–249CrossRefGoogle Scholar
  19. Durimel A, Passé-Coutrin N, Jean-Marius C, Gadiou R, Enriquez-Victorero C, Hernández-Valdés D, Jauregui-Haza U, Gaspard S (2015) Role of acidic sites in beta-hexachlorocyclohexane (β-HCH) adsorption by activated carbons: molecular modelling and adsorption–desorption studies. RSC Adv 5:85153–85164CrossRefGoogle Scholar
  20. Enriquez-Victorero C, Hernández-Valdés D, Montero-Alejo AL, Durimel A, Gaspard S, Jáuregui-Haza U (2014) Theoretical study of γ-hexachlorocyclohexane and β-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model. J. Mol. Graphics Modell. 51:137–148CrossRefGoogle Scholar
  21. Ferino-Pérez A, Gamboa-Carballo JJ, Ranguin R, Levalois-Grützmacher J, Bercion Y, Gaspard S, Miranda-Quintana RA, Arias M, Jáuregui-Haza UJJR (2019) Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins. RSC Adv 9:27484–27499CrossRefGoogle Scholar
  22. Fernandez-Bayo JD, Saison C, Voltz M, Disko U, Hofmann D, Berns AE (2013) Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Total Environ 463-464:395–403CrossRefGoogle Scholar
  23. Fournier A, Feidt C, Lastel ML, Archimede H, Thome JP, Mahieu M, Rychen G (2017) Toxicokinetics of chlordecone in goats: implications for risk management in French West Indies. Chemosphere 171:564–570CrossRefGoogle Scholar
  24. Frisch MJ et al (2009) Gaussian 09, revision a. 01. Gaussian, Inc., WallingfordGoogle Scholar
  25. Gamboa-Carballo JJ (2018) Molecular inclusion complexes of chlordecone and 1-iodinechlordecone with natural cyclodextrins. Quantum description of association process. Master thesis, Instituto superior de Teconologías y Ciencias Aplicadas, Universidad de La Habana, 124 ppGoogle Scholar
  26. Gamboa-Carballo JJ, Melchor-Rodriguez K, Hernandez-Valdes D, Enriquez-Victorero C, Montero-Alejo AL, Gaspard S, Jauregui-Haza UJ (2016a) Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions. J Mol Graphics Modell 65:83–93CrossRefGoogle Scholar
  27. Gamboa-Carballo JJ, Melchor-Rodríguez K, Hernández-Valdés D, Jáuregui-Haza UJ (2016b) Interaction of 1-iodochlordecone, as radioactive tracer, with carboxilate group on activated carbon. Nucleus 59:14–18Google Scholar
  28. Gamboa-Carballo JJ, Rana VK, Levalois-Grutzmacher J, Gaspard S, Jauregui-Haza U (2017) Structures and stabilities of naturally occurring cyclodextrins: a theoretical study of symmetrical conformers. J Mol Model 23:318CrossRefGoogle Scholar
  29. Garrido EM, Santos M, Silva P, Cagide F, Garrido J, Borges F (2012) Host-guest complexes of phenoxy alkyl acid herbicides and cyclodextrins. MCPA and β-cyclodextrin. J Environ Sci Health Part B 47:869–875CrossRefGoogle Scholar
  30. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  31. Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  32. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22:1127–1135CrossRefGoogle Scholar
  33. Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol Lett 20:885–887CrossRefGoogle Scholar
  34. Johri AK, Dua M, Saxena DM, Sethunathan N (2000) Enhanced degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis. Curr Microbiol 41:309–311CrossRefGoogle Scholar
  35. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  36. Le Déaut JY, Procaccia C (2009) In: Nationale A (ed) Les impacts de l’utilisation de la chlordécone et des pesticides aux Antilles: bilan et perspectives d’évolution. OPECST, Paris, p 487Google Scholar
  37. Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948 to 1997. Sci Total Environ 232:121–158CrossRefGoogle Scholar
  38. Listing of POPs in the Stockholm Convention: Annex A (Elimination) (2011)Google Scholar
  39. Liu H, Cai X, Wang Y, Chen J (2011) Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res 45:3499–3511CrossRefGoogle Scholar
  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  41. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  42. Montero LA, Esteva AM, Molina J, Zapardiel A, Hernández L, Márquez H, Acosta A (1998) A theoretical approach to analytical properties of 2,4-Diamino-5-phenylthiazole in water solution. Tautomerism and Dependence on pH. J Am Chem Soc 120:12023–12033CrossRefGoogle Scholar
  43. Montero-Cabrera LA (2000) GRANADA User’s Manual. Available at the web site:
  44. Montero-Cabrera LA, Llano J, Molina J, Fabian J (2000a) Multiple minima hypersurfaces of water clusters for calculations of association energy. Int J Quantum Chem 79:8–16CrossRefGoogle Scholar
  45. Montero-Cabrera LA, Sanchez E, Cruz R (2000b) Q3 program. Calculation of thermodynamic quantities of association in NVT ensembles. Available at the web site:
  46. Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 101:238–250CrossRefGoogle Scholar
  47. Nakanishi W, Hayashi S, Narahara K (2008) Atoms-in-molecules dual parameter analysis of weak to strong interactions: behaviors of electronic energy densities versus Laplacian of electron densities at bond critical points. J Phys Chem A 112:13593–13599CrossRefGoogle Scholar
  48. Nakanishi W, Hayashi S, Narahara K (2009) Polar coordinate representation of H_b (rc) versus (ℏ2/8m)∇2ρb(rc) at BCP in AIM analysis: classification and evaluation of weak to strong interactions. J Phys Chem A 113:10050–10057CrossRefGoogle Scholar
  49. Newhouse K, Berner T, Mukerjee D, Rooney A (2009) Toxicological review of chlordecone (kepone). EPA/635/R-07/004F, U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  50. Onogbosele CO, Scrimshaw MD (2014) Hexabromocyclododecane and hexachlorocyclohexane: how lessons learnt have led to improved regulation. Crit Rev Environ Sci Technol 44:1423–1442CrossRefGoogle Scholar
  51. Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392CrossRefGoogle Scholar
  52. Rana VK, Kissner R, Gaspard S, Levalois-Grützmacher J (2016) Cyclodextrin as a complexation agent in the removal of chlordecone from water. Chem Eng J 293:82–89CrossRefGoogle Scholar
  53. Řezáč J, Hobza P (2011a) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8:141–151CrossRefGoogle Scholar
  54. Řezáč J, Hobza P (2011b) A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett 506:286–289CrossRefGoogle Scholar
  55. Robert S (2012) Historique de la contamination des sédiments littoraux des Antilles françaises par la chlordécone (ChloSed), Rapport final de convention MAAP-Ifremer. L’Houmeau Ifremer, pp 92Google Scholar
  56. Roy LE, Hay PJ, Martin RL (2008) Revised basis sets for the LANL effective core potentials. J Chem Theory Comput 4:1029–1031CrossRefGoogle Scholar
  57. Sakakibara F, Takagi K, Kataoka R, Kiyota H, Sato Y, Okada S (2011) Isolation and identification of dieldrin-degrading Pseudonocardia sp. strain KSF27 using a soil-charcoal perfusion method with aldrin trans-diol as a structural analog of dieldrin. Biochem Biophys Res Commun 411:76–81CrossRefGoogle Scholar
  58. Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ. Sci. Technol. 40:1978–1983CrossRefGoogle Scholar
  59. Schäfer AI, Stelzl K, Faghih M, Sen Gupta S, Krishnadas KR, Heißler S, Pradeep T (2017) Poly (ether sulfone) nanofibers impregnated with β-Cyclodextrin for increased micropollutant removal from water. ACS Sustain Chem Eng 6:2942–2953CrossRefGoogle Scholar
  60. Sifaoui H, Modarressi A, Magri P, Stachowicz-Kusnierz A, Korchowiec J, Rogalski M (2016) Formation of beta-cyclodextrin complexes in an anhydrous environment. J Mol Model 22:207CrossRefGoogle Scholar
  61. Steed J, Atwood J (2009) Supramolecular chemistry. John Wiley & Sons, Ltd, ChichesterCrossRefGoogle Scholar
  62. Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213CrossRefGoogle Scholar
  63. Stewart JJP (2016) MOPAC2016. Stewart Computational Chemistry, Colorado SpringsGoogle Scholar
  64. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754CrossRefGoogle Scholar
  65. Vallack HW, Bakker DJ, Brandt I, Broström-Lundén E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF (1998) Controlling persistent organic pollutants–what next? Environ Toxicol Pharmacol 6:143–175CrossRefGoogle Scholar
  66. Vijgen J, Yi LF, Forter M, Lal R, Weber R (2006) The legacy of lindane and technical HCH production. Organohal Compd 68:899–904Google Scholar
  67. Vilardebo A, Beugnon M, Melin P, Lecoq J, Aubert B (1974) Chlordécone et autres insecticides dans la lutte contre le charançon du bananier Cosmopolites sordidus GERM. Fruits 29:267–278Google Scholar
  68. Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207CrossRefGoogle Scholar
  69. Wycisk P, Stollberg R, Neumann C, Gossel W, Weiss H, Weber R (2013) Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen. Environ Sci Pollut Res 20:1907–1917CrossRefGoogle Scholar
  70. Xiao H, Li N, Wania F (2004) Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane. J Chem Eng Data 49:173–185CrossRefGoogle Scholar
  71. Zhang X, Liu J, Hou W, Tong J, Ren L, Sun G, Sun Y (2016) Preparation and properties of pesticide/cyclodextrin complex intercalated into ZnAl-layered houble hydroxide. Ind Eng Chem Res 55:1550–1558CrossRefGoogle Scholar
  72. Zhao Y, Truhlar DG (2008) A prototype for graphene material simulation: structures and interaction potentials of coronene dimers. J Phys Chem C 112:4061–4067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Instituto Tecnológico de Santo Domingo (INTEC)Santo DomingoDominican Republic
  2. 2.Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC)Universidad de La HabanaLa HabanaCuba
  3. 3.Laboratoire COVACHIM M2EUniversité des AntillesPointe a PitreFrance

Personalised recommendations