Influence of particle size distribution on anaerobic degradation of phenol and analysis of methanogenic microbial community

  • Jing Wang
  • Benteng Wu
  • Julian Muñoz Sierra
  • Chunhua He
  • Zhenhu HuEmail author
  • Wei WangEmail author
Research Article


Sludge morphology considerably affects the mechanism underlying microbial anaerobic degradation of phenol. Here, we assessed the phenol degradation rate, specific methanogenic activity, electron transport activity, coenzyme F420 concentration, and microbial community structure of five phenol-degrading sludge of varying particle sizes (i.e., < 20, 20–50, 50–100, 100–200, and > 200 μm). The results indicated an increase in phenol degradation rate and microbial community structure that distinctly correlated with an increase in sludge particle size. Although the sludge with the smallest particle size (< 20 μm) showed the lowest phenol degradation rate (9.3 mg COD·gVSS−1 day−1), its methanogenic activity with propionic acid, butyric acid, and H2/CO2 as substrates was the best, and the concentration of coenzyme F420 was the highest. The small particle size sludge did not contain abundant syntrophic bacteria or hydrogenotrophic methanogens, but contained abundant acetoclastic methanogens. Moreover, the floc sizes of the different sludge varied in important phenol-degrading bacteria and archaea, which may dominate the synergistic mechanism. This study provides a new perspective on the role of sludge floc size on the anaerobic digestion of phenol.


Anaerobic digestion Phenol degradation Particle size distribution Phenol-degrading sludge Methanogenic activity Microbial community structure 


Funding information

This study was funded by the National Natural Science Foundation of China (51878232) and CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China (KF201702).

Supplementary material

11356_2020_7665_MOESM1_ESM.docx (345 kb)
ESM 1 (DOCX 345 kb)


  1. Afridi ZUR, Wu J, Li ZH, Akand R, Cao ZP, Poncin S, Li HZ (2018) Novel insight of spatial mass transfer conditions of upflow anaerobic reactor. J Clean Prod 204:390–398CrossRefGoogle Scholar
  2. Antwi P, Li J, Boadi PO, Meng J, Shi E, Xue C, Zhang Y, Ayivi F (2017) Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB. Bioresour Technol 235:348–357CrossRefGoogle Scholar
  3. Bretschger O, Carpenter K, Phan T, Suzuki S, Si I, Grossi-Soyster E, Flynn M, Hogan J (2015) Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community. Bioresour Technol 195:254–264CrossRefGoogle Scholar
  4. Chang Y-J, Nishio N, Nagai S (1995) Characteristics of granular methanogenic sludge grown on phenol synthetic medium and methanogenic fermentation of phenolic wastewater in a UASB reactor. J Ferment Bioeng 79:348–353CrossRefGoogle Scholar
  5. Chen C-L, Wu J-H, Liu W-T (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42:1963–1976CrossRefGoogle Scholar
  6. Chen C, Yao X, Li QX, Wang Q, Liang J, Zhang S, Ming J, Liu Z, Deng J, Yoza BA (2018) Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor. Chemosphere 204:227–234CrossRefGoogle Scholar
  7. Chou HH, Huang JS (2005) Comparative granule characteristics and biokinetics of sucrose-fed and phenol-fed UASB reactors. Chemosphere 59:107–116CrossRefGoogle Scholar
  8. Dolfing J, Mulder JW (1985) Comparison of methane production rate and coenzyme f(420) content of methanogenic consortia in anaerobic granular sludge. Appl Environ Microb 49:1142–1145CrossRefGoogle Scholar
  9. Fang H, Zhou G (1999) Degradation of phenol and p-cresol in anaerobic reactors. Soc Sci Med 117(5):142–149Google Scholar
  10. Fang HHP, Chen T, Li YY (1996) Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res 30(6):0–1360CrossRefGoogle Scholar
  11. Fukuzaki S, Chang YJ, Nishio N (1991) Characteristics of granular Methanogenic sludge grown on lactate in a USAB reactor. Ferment Bioeng 72CrossRefGoogle Scholar
  12. Gomez-Acata S, Esquivel-Rios I, Perez-Sandoval MV, Navarro-Noya Y, Rojas-Valdez A, Thalasso F, Luna-Guido M, Dendooven L (2017) Bacterial community structure within an activated sludge reactor added with phenolic compounds. Appl Microbiol Biot 101:3405–3414CrossRefGoogle Scholar
  13. Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T, Benizri E, Delfosse P (2015) Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels 8Google Scholar
  14. Heine-Dobbernack E, Schoberth SM, Sahm H (1988) Relationship of intracellular coenzyme F(420) content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microb 54:454–459CrossRefGoogle Scholar
  15. Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR (2017) Metatranscriptomic evidence for direct interspecies Electron transfer between Geobacter and Methanothrix species in Methanogenic Rice Paddy soils. Appl Environ Microb 83Google Scholar
  16. Hou J, Qiu Z, Han H, Zhang Q (2018) Toxicity evaluation of lignocellulose-derived phenolic inhibitors on Saccharomyces cerevisiae growth by using the QSTR method. Chemosphere 201:286–293CrossRefGoogle Scholar
  17. Huang X, Dong W, Wang H, Feng Y (2018) Role of acid/alkali-treatment in primary sludge anaerobic fermentation: insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing. Bioresour Technol 249:943–952CrossRefGoogle Scholar
  18. Ju F, Zhang T (2014) Novel microbial populations in ambient and Mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microbial Ecol 68:235–246CrossRefGoogle Scholar
  19. Ju F, Wang Y, Zhang T (2018) Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. Biotechnol Biofuels 11Google Scholar
  20. Lai C-Y, Wen L-L, Zhang Y, Luo S-S, Wang Q-Y, Luo Y-H, Chen R, Yang X, Rittmann BE, Zhao H-P (2016) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res 88:467–474CrossRefGoogle Scholar
  21. Leandro T, Rodriguez N, Rojas P, Sanz JL, da Costa MS, Amils R (2018) Study of methanogenic enrichment cultures of rock cores from the deep subsurface of the Iberian Pyritic Belt. Heliyon 4:e00605–e00605CrossRefGoogle Scholar
  22. Li C, Tabassum S, Zhang Z (2014) An advanced anaerobic expanded granular sludge bed (AnaEG) for the treatment of coal gasification wastewater. RSC Adv 4:57580–57586CrossRefGoogle Scholar
  23. Li Y, Tabassum S, Yu Z, Wu X, Zhang X, Song Y, Chua C, Zhang Z (2016) Effect of effluent recirculation rate on the performance of anaerobic bio-filter treating coal gasification wastewater under co-digestion conditions. RSC Adv 6:87926–87934CrossRefGoogle Scholar
  24. Li Y, Sun Y, Li L, Yuan Z (2018a) Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. Bioresour Technol 250:117–123CrossRefGoogle Scholar
  25. Li Y, Tabassum S, Chu C, Zhang Z (2018b) Inhibitory effect of high phenol concentration in treating coal gasification wastewater in anaerobic biofilter. J Environ Sci 64:207–215CrossRefGoogle Scholar
  26. Li Y, Ren C, Zhao Z, Yu Q, Zhao Z, Liu L, Zhang Y, Feng Y (2019) Enhancing anaerobic degradation of phenol to methane via solubilizing Fe (III) oxides for dissimilatory iron reduction with organic chelates. Bioresour Technol 291CrossRefGoogle Scholar
  27. Liu Y, Zhu Y, Jia H, Yong X, Zhang L, Zhou J, Cao Z, Kruse A, Wei P (2017) Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour Technol 244:445–451CrossRefGoogle Scholar
  28. Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp nov. Extremophiles 14:61–69CrossRefGoogle Scholar
  29. Luo J, Chen H, Han X, Sun Y, Yuan Z, Guo J (2017) Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation-anammox process. Fems Microbiol Ecol 93Google Scholar
  30. Madigou C, Poirier S, Bureau C, Chapleur O (2016) Acclimation strategy to increase phenol tolerance of an anaerobic microbiota. Bioresour Technol 216:77–86CrossRefGoogle Scholar
  31. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104:7600–7605CrossRefGoogle Scholar
  32. Muñoz Sierra JD, Lafita C, Gabaldon C, Spanjers H, van Lier JB (2017) Trace metals supplementation in anaerobic membrane bioreactors treating highly saline phenolic wastewater. Bioresour Technol 234:106–114CrossRefGoogle Scholar
  33. Muñoz Sierra JDM, Oosterkamp MJ, Wang W, Spanjers H, van Lier JB (2018) Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: performance robustness and endured microbial community. Water Res 141:172–184CrossRefGoogle Scholar
  34. Na J-G, Lee M-K, Yun Y-M, Moon C, Kim M-S, Kim D-H (2016) Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing. Biochem Eng J 112:241–248CrossRefGoogle Scholar
  35. Nguyen VK, Choi W, Park Y, Yu J, Lee T (2017) Characterization of diversified Sb(V)-reducing bacterial communities by various organic or inorganic electron donors. Bioresour Technol 250:239CrossRefGoogle Scholar
  36. Nobu MK, Narihiro T, Liu M, Kuroda K, Mei R, Liu W-T (2017) Thermodynamically diverse syntrophic aromatic compound catabolism. Environ Microbiol 19:4576–4586CrossRefGoogle Scholar
  37. Qian M, Li Y, Zhang Y, Sun Z, Wang Y, Feng J, Yao Z, Zhao L (2019) Efficient acetogenesis of anaerobic co-digestion of food waste and maize straw in a HSAD reactor. Bioresour Technol 283:221–228CrossRefGoogle Scholar
  38. Ramakrishnan A, Gupta SK (2006) Anaerobic biogranulation in a hybrid reactor treating phenolic waste. J Hazard Mater 137:1488–1495CrossRefGoogle Scholar
  39. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–771CrossRefGoogle Scholar
  40. Rosenkranz F, Cabrol L, Carballa M, Donoso-Bravo A, Cruz L, Ruiz-Filippi G, Chamy R, Lema JM (2013) Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47:6739–6749CrossRefGoogle Scholar
  41. Satoru S, Akio U, Yoji I (2011) Microbial communities associated with acetate-rich gas-petroleum reservoir surface facilities. Biosci Biotechnol Biochem 75:1835–1837CrossRefGoogle Scholar
  42. Shi S-L, Lv J-P, Liu Q, Nan F-R, Jiao X-Y, Feng J, Xie S-L (2018) Application of Phragmites australis to remove phenol from aqueous solutions by chemical activation in batch and fixed-bed columns. Environ Sci Pollut R 25:23917–23928CrossRefGoogle Scholar
  43. Sierra JDM, Oosterkamp MJ, Wang W, Spanjers H, van Lier JB (2019) Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater: overcoming high salinity. Chem Eng J 366:480–490CrossRefGoogle Scholar
  44. Subramanyam R, Mishra IM (2013) Characteristics of methanogenic granules grown on glucose in an upflow anaerobic sludge blanket reactor. Biosyst Eng 114:113–123CrossRefGoogle Scholar
  45. Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM, Smidt H (2013) Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure. Appl Environ Microb 79:619–630CrossRefGoogle Scholar
  46. Svensson K, Paruch L, Gaby JC, Linjordet R (2018) Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste. Bioresour Technol 269:276–284CrossRefGoogle Scholar
  47. Tay JH, He YX, Yan YG (2001) Improved anaerobic degradation of phenol with supplemental glucose. J Environ Eng 127(1):38–45CrossRefGoogle Scholar
  48. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6:579–591CrossRefGoogle Scholar
  49. Town JR, Links MG, Fonstad TA, Dumonceaux TJ (2014) Molecular characterization of anaerobic digester microbial communities identifies microorganisms that correlate to reactor performance. Bioresour Technol 151:249–257CrossRefGoogle Scholar
  50. Veeresh GS, Kumar P, Mehrotra I (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res 39:154–170CrossRefGoogle Scholar
  51. Viggi CC, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust Syntrophic pathway of Methanogenic propionate degradation. Environ Sci Technol 48:7536–7543CrossRefGoogle Scholar
  52. Wang J, Li Y (2016) Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion. Appl Energ 183:1123–1132CrossRefGoogle Scholar
  53. Wang W, Han H, Yuan M, Li H (2010) Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition. J Environ Sci 22:1868–1874CrossRefGoogle Scholar
  54. Wang W, Han H, Yuan M, Li H, Fang F, Wang K (2011a) Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal. Bioresour Technol 102:5454–5460CrossRefGoogle Scholar
  55. Wang W, Ma W, Han H, Li H, Yuan M (2011b) Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor. Bioresour Technol 102:2441–2447CrossRefGoogle Scholar
  56. Wang J, Liu H, Fu B, Xu K, Chen J (2013) Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge. Biochem Eng J 70:1–8CrossRefGoogle Scholar
  57. Wang W, Wang S, Zhang J, Hu Z, Zhang X, Sierra JM (2016) Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron. Int Biodeterior Biodegradation 113:126–133CrossRefGoogle Scholar
  58. Wang S, Hou X, Su H (2017a) Exploration of the relationship between biogas production and microbial community under high salinity conditions. Sci Rep 7Google Scholar
  59. Wang W, Wang S, Ren X, Hu Z, Yuan S (2017b) Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor. Environ Sci Pollut R 24:26125–26135CrossRefGoogle Scholar
  60. Wang W, Wu B, Pan S, Yang K, Hu Z, Yuan S (2017c) Performance robustness of the UASB reactors treating saline phenolic wastewater and analysis of microbial community structure. J Hazard Mater 331:21–27CrossRefGoogle Scholar
  61. Wei G, Yu J, Zhu Y, Chen W, Wang L (2008) Characterization of phenol degradation by rhizobium sp CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. J Hazard Mater 151:111–117CrossRefGoogle Scholar
  62. Wu J, Afridi ZUR, Cao ZP, Zhang ZL, Poncin S, Li HZ, Zuo JE, Wang KJ (2016) Size effect of anaerobic granular sludge on biogas production: a micro scale study. Bioresour Technol 202:165–171CrossRefGoogle Scholar
  63. Wu B, He C, Yuan S, Hu Z, Wang W (2019) Hydrogen enrichment as a bioaugmentation tool to alleviate ammonia inhibition on anaerobic digestion of phenol-containing wastewater. Bioresour Technol 276:97–102CrossRefGoogle Scholar
  64. Xu H, Wang C, Yan K, Wu J, Zuo J, Wang K (2016) Anaerobic granule-based biofilms formation reduces propionate accumulation under high H-2 partial pressure using conductive carbon felt particles. Bioresour Technol 216:677–683CrossRefGoogle Scholar
  65. Yan W, Sun F, Liu J, Zhou Y (2018) Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chem Eng J 352:1–9CrossRefGoogle Scholar
  66. Yin Q, Yang S, Wang Z, Xing L, Wu G (2018) Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chem Eng J 333:216–225CrossRefGoogle Scholar
  67. Zhang T, Ke SZ, Liu Y, Fang HP (2005) Microbial characteristics of a methanogenic phenol-degrading sludge. Water Sci Technol 52:73–78CrossRefGoogle Scholar
  68. Zhang J, Li W, Lee J, Loh K-C, Dai Y, Tong YW (2017) Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy 137:479–486CrossRefGoogle Scholar
  69. Zhang C, Yuan Q, Lu Y (2018a) Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge. Water Res 146:275–287CrossRefGoogle Scholar
  70. Zhang F, Hou J, Miao L, Chen J, Xu Y, You G, Liu S, Ma J (2018b) Chlorpyrifos and 3,5,6-trichloro-2-pyridinol degradation in zero valent iron coupled anaerobic system: performances and mechanisms. Chem Eng J 353:254–263CrossRefGoogle Scholar
  71. Zhao H, Zhu H, Ji Q, Yu G, Zhang Z (2013) Technological processes of hydrolytic acidification for coal gasification wastewater treatment. Water Purif Technol 32:45–50Google Scholar
  72. Zhao Z, Zhang Y, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR (2016) Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour Technol 209:148–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Municipal Engineering, School of Civil EngineeringHefei University of TechnologyHefeiChina
  2. 2.Section Sanitary Engineering, Department of Water ManagementDelft University of TechnologyDelftThe Netherlands
  3. 3.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations