Advertisement

Biological index based on epiphytic diatom assemblages is more restrictive than the physicochemical index in water assessment on an Amazon floodplain, Brazil

  • Maria Tereza Morais Pereira Souza LoboEmail author
  • Paulo Sérgio Scalize
  • Cleber Nunes Kraus
  • Weliton José da Silva
  • Jérémie Garnier
  • David da Motta Marques
  • Marie-Paule Bonnet
  • Ina de Souza Nogueira
Research Article
  • 42 Downloads

Abstract

Canadian Water Quality Index (CWQI) provides protection for freshwater life promoting healthy ecosystems and safeguarding human health. Biological Diatom Index (BDI) was developed to indicate the ecological status and water quality of freshwater systems. This paper evaluates the relations between the two different indices. During rising and falling, water samples were taken in the Curuai Floodplain, Brazil. CWQI was calculated using 14 physicochemical parameters and 1 microbiological parameter. The limits were established according to freshwater quality conditions and standards based on water use classes 1 and 2 determined in CONAMA 357 legislation and British Columbia. Canadian Water Quality Index categorization ranged from “marginal” to “excellent,” most sampling units were “good” (71%), followed by “fair” (12%) and “excellent” (12%) water quality. Total phosphorus (38 times), chlorophyll a (20), dissolved oxygen (10), and total organic carbon (10) were the parameters that presented the most non-compliance values. Encyonema silesiacum (14%), Gomphonema parvulum (13%), and Navicula cryptotenella (12%) were the main taxa in the rising period, while G. lagenula, E. silesiacum, and Fragilaria capucina were the main taxa during the falling period. BDI ranges from I to V water quality classes. We observed “poor” to “very good” ecological status, with most sampling units “moderate” (52%) and “good” (29%). Water quality for class 2 was better than water quality for class 1, as the limits of the parameters evaluated were more restrictive in class 1 than in class 2 and the predominant uses of water require a higher degree of water purity. The biological index based on diatoms was the most restrictive index whose water classes and categorizations have shown an ecological status that could threaten the protection of aquatic communities on the Curuai floodplain. We suggest the combined use of both indices—physicochemical and biological for water quality assessment in this type of environment.

Keywords

Canadian Council of Ministers of the Environment Water Quality Index Water classes Biological Diatom Index Ecological status Water Framework Directive 

Notes

Acknowledgments

M.T.M.P.S.L. received scholarships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). C.N.K. received scholarships from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This research was done under the auspices of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), IRD (Institut de Recherche pour le Développement, grant number 490634/2013-3), and LMI OCE (Laboratoire Mixte International ‘Observatoire des Changements Environnementaux’) and of two research programs, Clim-FABIAM, which was funded by FRB (Fondation pour la Recherche sur la Biodiversité), and Bloom-ALERT, which was funded by the GUYAMAZON program (IRD/CIRAD/Ambassade de France/FAPEAM).

Funding information

The paper received funding from the European Union’s Horizon 2020 Research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 691053.

References

  1. Abril G, Martinez JM, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim JH, Bernardes MC, Savoye N, Deborde J, Souza EL, Albéric P, Souza MFL, Roland F (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398.  https://doi.org/10.1038/nature12797 CrossRefGoogle Scholar
  2. Affonso AG, Barbosa C, Novo EMLM (2011) Water quality changes in floodplain lakes due to the Amazon River flood pulse: Lago Grande de Curuai (Pará). Braz J Biol 71(3):601–610.  https://doi.org/10.1590/S1519-69842011000400004 CrossRefGoogle Scholar
  3. Affonso AG, Queiroz HL, Novo EMLM (2015) Abiotic variability among different aquatic systems of the Central Amazon floodplain during drought and flood events. Braz J Biol 75(4):60–69.  https://doi.org/10.1590/1519-6984.04214 CrossRefGoogle Scholar
  4. AFNOR (2000) Norme Française NF T 90–354. Qualité de l’eau. Détermination de l’Indice Biologique Diatomées (IBD). Association Française de Normalisation, FranceGoogle Scholar
  5. Almeida O (2004) Fisheries Management in the Brazilian Amazon. PhD Thesis. Deparment of Environmental Science and Technology, Imperial College, LondonGoogle Scholar
  6. Alves MTR, Teresa FB, Nabout JC (2014) A global scientific literature of research on water quality indices: trends, biases and future directions. Acta Limnol Bras 26(3):245–253.  https://doi.org/10.1590/S2179-975X2014000300004 CrossRefGoogle Scholar
  7. ANA (2012) Plano estratégico de recursos hídricos dos afluentes da margem direita do rio Amazonas: resumo executivo. Agência Nacional de Águas, BrasíliaGoogle Scholar
  8. ANA (2017) Conjuntura dos Recursos Hídricos no Brasil: relatório pleno. Agência Nacional de Águas, BrasíliaGoogle Scholar
  9. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62(1):245–253.  https://doi.org/10.1111/j.1541-0420.2005.00440.x CrossRefGoogle Scholar
  10. APHA (2017) Standard methods for examination of water and wastewater, 23rd edn. American Public Health Association, WashingtonGoogle Scholar
  11. Arnesen AS, Silva TS, Hess LL, Novo EM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ 130:51–61.  https://doi.org/10.1016/j.rse.2012.10.035 CrossRefGoogle Scholar
  12. Baker A (2003) Land use and water quality. Hydrol Process 17(12):2499–2501.  https://doi.org/10.1002/hyp.5140 CrossRefGoogle Scholar
  13. Baldwin DS, Colloff MJ, Mitrovic SM, Bond NR, Wolfenden B (2016) Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows? Mar Freshw Res 67(9):1387–1399CrossRefGoogle Scholar
  14. Bayley PB (1995) Understanding large river-floodplain ecosystems: significant economic advantages and increased biodiversity and stability would result from restoration of impaired systems. BioScience 45(3):153–158.  https://doi.org/10.2307/1312554 CrossRefGoogle Scholar
  15. Beaulac MN, Reckhow KH (1982) An examination of land use-nutrient export relationships. JAWRA J Am Water Resour Assoc 18(6):1013–1024.  https://doi.org/10.1111/j.1752-1688.1982.tb00109.x CrossRefGoogle Scholar
  16. Bere T (2016) Are diatom-based biotic indices developed in eutrophic, organically enriched waters reliable monitoring metrics in clean waters? Ecol Indic 62:312–316.  https://doi.org/10.1016/j.ecolind.2015.11.008 CrossRefGoogle Scholar
  17. Bellinger EG, Sigee DC (2015) Freshwater algae: identification, enumeration and use as bioindicators. 2nd Ed. John Wiley & Sons, United KingdomGoogle Scholar
  18. Bicudo CEM, Menezes M (2017) Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições, 3rd edn. Rima, São CarlosGoogle Scholar
  19. Biggs TW, Dunne T, Domingues TF, Martinelli LA (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Water Resour Res 38(8):25–1–25–16CrossRefGoogle Scholar
  20. Biggs T, Dunne T, Martinelli L (2004) Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon basin. Biogeochemistry 68(2):227–257.  https://doi.org/10.1023/B:BIOG.0000025744.78309.2e CrossRefGoogle Scholar
  21. Bomfim EO, Kraus CN, Bonnet MP, Lobo MTMPS, Nogueira IS, Peres LGM, Boaventura GR, Laques AE, Garnier J, Marques DM (2019) Trophic state index validation based on phytoplankton functional groups approach in Amazon floodplains lakes. Inland Waters 9(3):309–319.  https://doi.org/10.1080/20442041.2019.1570785 CrossRefGoogle Scholar
  22. Bonnet MP, Barroux G, Seyler P, Pecly G, Moreira-Turcq P, Lagane C, Cochonneau G, Viers J, Seyler F, Guyot JL (2005) Seasonal links between the Amazon corridor and its flood plain: the case of the varzea of Curuaí. In: Dynamics and Biogeochemistry of River Corridors and Wetlands (Proceedings of symposium S4 held during the Seventh IAHS Scientific Assembly, IAHS Publication 294, Foz de Iguaçu, Brasil, 69–77Google Scholar
  23. Bonnet MP, Barroux G, Martinez JM, Seyler F, Moreira-Turcq P, Cochonneau G, Melack JM, Boaventura G, Maurice-Bourgoin L, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler P (2008) Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). J Hydrol 349(1–2):18–30.  https://doi.org/10.1016/j.jhydrol.2007.10.055 CrossRefGoogle Scholar
  24. Bonnet MP, Garnier J, Barroux G, Boaventura GR, Seyler P (2016) Biogeochemical functioning of Amazonian floodplains: the case of Lago Grande de Curuaí. In: Pokrovsky OS (ed) Riparian zones: charateristics, management practices and ecological impacts. Nova Publ, New York, pp 77–98Google Scholar
  25. Bonnet MP, Pinel S, Garnier J, Bois J, Boaventura GR, Seyler P, Marques DM (2017) Amazonian floodplain water balance based on modelling and analyses of hydrologic and electrical conductivity data. Hydrol Process 31(9):1702–1718.  https://doi.org/10.1002/hyp.11138 CrossRefGoogle Scholar
  26. Boyd CE (2015) Water quality: an introduction, 2nd edn. SpringerGoogle Scholar
  27. Braga KAAF, da Silva FF, Schaffrath VR (2011) Microbacia do Igarapé do Gigante: Unidade de planejamento para a gestão da Bacia do Tarumã. Rev Agron Meio Ambient 5(1):103–129Google Scholar
  28. Braga GG, Becker V, Oliveira JNPD, Mendonça Junior JRD, Bezerra AFM, Torres LM, Galvão AMF, Mattos A (2015) Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnol Bras 27(1):15–23.  https://doi.org/10.1590/S2179-975X2214 CrossRefGoogle Scholar
  29. BRASIL (1997) Presidência da República Casa Civil. Lei N° 9.433, 8 de janeiro de 1997. Institui a Política Nacional de Recursos Hídricos e cria o Sistema Nacional de Gerenciamento de Recursos Hídricos. Brasília. Pub. Diário Oficial da República Federativa do BrasilGoogle Scholar
  30. BRASIL (2001) Conselho Nacional do Meio Ambiente. Resolução CONAMA N° 274, 25 de janeiro de 2001. Define os critérios de balneabilidade em águas brasileiras. Diário Oficial da República Federativa do BrasilGoogle Scholar
  31. BRASIL (2005) Conselho Nacional do Meio Ambiente, Resolução CONAMA N° 357, 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais. Diário Oficial da República Federativa do BrasilGoogle Scholar
  32. BRASIL (2008) Conselho Nacional do Meio Ambiente. Resolução CONAMA N° 91, 05 de novembro de 2008. Dispõe sobre procedimentos gerais para o enquadramento dos corpos de água superficiais e subterrâneos. Diário Oficial da República Federativa do BrasilGoogle Scholar
  33. BRASIL (2017) Ministério da Saúde. Portaria de Consolidação N° 5, 03 de outubro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Diário Oficial da República Federativa do BrasilGoogle Scholar
  34. Brasil J, Attayde JL, Vasconcelos FR, Dantas DD, Huszar VL (2016) Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770(1):145–164CrossRefGoogle Scholar
  35. Brooks BW, Lazorchak JM, Howard MDA, Johnson MVV, Morton SL, Perkins DAK, Reavie ED, Scott GI, Smith SA, Steevens JA (2016) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35(1):6–13.  https://doi.org/10.1002/etc.3220 CrossRefGoogle Scholar
  36. Castello L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 22(3):990–1007.  https://doi.org/10.1111/gcb.13173 CrossRefGoogle Scholar
  37. Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6(4):217–229.  https://doi.org/10.1111/conl.12008 CrossRefGoogle Scholar
  38. CCME (1999) Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  39. CCME (2001) Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, Technical Report. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  40. CCME (2003) Canadian water quality guidelines for the protection of aquatic life: guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  41. Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16(1):51–60.  https://doi.org/10.1016/S0925-8574(00)00089-6 CrossRefGoogle Scholar
  42. Connor R (2015) The United Nations world water development report 2015: water for a sustainable world, vol 1. UNESCO Publishing, FranceGoogle Scholar
  43. Cosgrove WJ, Rijsberman FR (2014) World water vision: making water everybody's business, 1st edn. Routledge Ed, LondonCrossRefGoogle Scholar
  44. Costa SM, Brondízio ES (2009) Dependência inter-urbana entre as cidades amazônicas: crescimento urbano, deficiências em infra-estrutura e redes Sociais. Redes 14(3):211–234Google Scholar
  45. Costa LF, Wengrat S, Bicudo DC (2017) Diatoms from distinct habitats of a highly heterogeneous reservoir, Billings Complex, southeastern Brazil. Hoehnea 44(4):559–579.  https://doi.org/10.1590/2236-8906-12/2017 CrossRefGoogle Scholar
  46. Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9(4):621–650.  https://doi.org/10.1016/j.ecolind.2008.06.003 CrossRefGoogle Scholar
  47. Cox EJ (2015) Diatoms, Diatomaceae (Bacillariophyceae s.l., Bacillariophyta). In: Frey W (ed) Syllabus of plant families. A. Engler Syllabus der Pflantzenfamilien. 2/1 Photoautotrophic eukaryotic algae. Borntraeger, StuttgartGoogle Scholar
  48. Dalu T, Bere T, Froneman PW (2016) Assessment of water quality based on diatom indices in a small temperate river system, Kowie River, South Africa. Water SA 42(2):183–193.  https://doi.org/10.4314/wsa.v42i2.02 CrossRefGoogle Scholar
  49. Epele LB, Manzo LM, Grech MG, Macchi P, Claverie AÑ, Lagomarsino L, Miserendino ML (2018) Disentangling natural and anthropogenic influences on Patagonian pond water quality. Sci Total Environ 613:866–876.  https://doi.org/10.1016/j.scitotenv.2017.09.147 CrossRefGoogle Scholar
  50. Fantin-Cruz I, Pedrollo O, Girard P, Zeilhofer P, Hamilton SK (2016) Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal floodplain. Hydrobiologia 768(1):223–238.  https://doi.org/10.1007/s10750-015-2550-4 CrossRefGoogle Scholar
  51. FAO (2016) AQUASTAT website. Food and Agriculture Organization of the United Nations. Website accessed on [2018/07/03]. http://www.fao.org/nr/water/aquastat/basins/amazon/print1.stm
  52. Fernandes NC, Scalize PS (2015) Comparação entre dois métodos para determinação da qualidade da água tratada. Ciência Engenharia 24(2):85–93.  https://doi.org/10.14393/19834071.2015.30122 CrossRefGoogle Scholar
  53. Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hansson D, He Y, Holtappels M, Kirf MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11:1215–1259.  https://doi.org/10.5194/bg-11-1215-2014 CrossRefGoogle Scholar
  54. Germer S, Neill C, Vetter T, Chaves J, Krusche AV, Elsenbeer H (2009) Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J Hydrol 364(3–4):349–363.  https://doi.org/10.1016/j.jhydrol.2008.11.013 CrossRefGoogle Scholar
  55. González E, Felipe-Lucia MR, Bourgeois B, Boz B, Nilsson C, Palmer G, Sher AA (2017) Integrative conservation of riparian zones. Biol Conserv 211(B):20–29.  https://doi.org/10.1016/j.biocon.2016.10.035 CrossRefGoogle Scholar
  56. Gorenflo LJ, Warner DB (2016) Integrating biodiversity conservation and water development: in search of long-term solutions. WIRES Water 3(3):301–311.  https://doi.org/10.1002/wat2.1142 CrossRefGoogle Scholar
  57. Goudie AS (2018) Human impact on the natural environment: past, present and future, 8th edn. University of Oxford, United Kingdom, John Wiley and Sons LtdaGoogle Scholar
  58. Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway Website accessed on [2018/07/18]. http://www.algaebase.org Google Scholar
  59. IBGE (2018. Instituto Brasileiro de Geografia e Estatística. Produção da Pecuária Municipal. Website accessed on [2019/11/20]. https://cidades.ibge.gov.br/brasil/pa/obidos/pesquisa/18/16459
  60. IBGE (2019) População estimada. Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, Estimativas da população residente com data de referência 1° de julho de 2019. Website accessed on [2019/11/20]Google Scholar
  61. Ismail AH, Adnan AAM (2016) Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Trop Life Sci Res 27(1):31–38.  https://doi.org/10.21315/tlsr2016.27.3.5 CrossRefGoogle Scholar
  62. Jakubowska N, Zagajewski P, Gołdyn R (2013) Water blooms and cyanobacterial toxins in lakes. Pol J Environ Stud 22(4):1077–1082Google Scholar
  63. Jenny JP, Francus P, Normandeau A, Lapointe F, Perga ME, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol 22(4):1481–1489.  https://doi.org/10.1111/gcb.13193 CrossRefGoogle Scholar
  64. Jeronimo CE d M, Souza FRR (2013) Determinação do índice de qualidade da água da lagoa de Extremoz, RN: Série temporal e correlação a índices pluviométricos. REGET/UFSM 10(10):2219–2232.  https://doi.org/10.5902/223611707888 CrossRefGoogle Scholar
  65. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109(3):445–454Google Scholar
  66. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Canadian special publication of fisheries and aquatic sciences 106(1):110–127Google Scholar
  67. Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches and applications - an update. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–149Google Scholar
  68. Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag 20(6):461–475.  https://doi.org/10.1007/s11273-012-9268-0 CrossRefGoogle Scholar
  69. Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat Ecosyst 24(1):5–22.  https://doi.org/10.1002/aqc.2386 CrossRefGoogle Scholar
  70. Kondolf GM, Pinto PJ (2017) The social connectivity of urban rivers. Geomorphology 277:182–196.  https://doi.org/10.1016/j.geomorph.2016.09.028 CrossRefGoogle Scholar
  71. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, StuttgartGoogle Scholar
  72. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  73. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, StuttgartGoogle Scholar
  74. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae, 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, StuttgartGoogle Scholar
  75. Lange-Bertalot H (1995) Taxonomy. Iconographia Diatomologica vol. 1. Koeltz Scientific BooksGoogle Scholar
  76. Lange-Bertalot H (1996a) Ecology-Diversity-Taxonomy. Iconographia Diatomologica vol. 2. Koeltz Scientific BooksGoogle Scholar
  77. Lange-Bertalot H (1996b) Taxonomy. Iconographia Diatomologica vol. 3. Koeltz Scientific BooksGoogle Scholar
  78. Lange-Bertalot H (1996c) Taxonomy. Iconographia Diatomologica vol. 4. Koeltz Scientific BooksGoogle Scholar
  79. Lange-Bertalot H (1998) Tropical diatoms of South America I. Iconographia Diatomologica vol. 5. Koeltz Scientific Books, Ganther VerlangGoogle Scholar
  80. Lange-Bertalot H (1999) Zur revision der Gattung Gomphonema. Iconographia Diatomologica vol. 8. Koeltz Scientific Books, Ganther VerlangGoogle Scholar
  81. Lange-Bertalot H (2000) Diatomeen der Anden von Venezuela bis Patagonien/Tierra del Fuego. Iconographia Diatomologica vol. 9. Koeltz Scientific Books, Ganther VerlangGoogle Scholar
  82. Lange-Bertalot H (2001) Diatoms of Europe, vol 2. Koeltz Scientific Books, Ganther VerlangGoogle Scholar
  83. Lange-Bertalot H (2002) Diatoms of Europe, vol 3. Koeltz Scientific Books, Ganther VerlangGoogle Scholar
  84. Lavoie I, Campeau S, Fallu MA, Dillon PJ (2006) Diatoms and biomonitoring: should cell size be accounted for? Hydrobiologia 573(1):1–16.  https://doi.org/10.1007/s10750-006-0223-z CrossRefGoogle Scholar
  85. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69(1):1–24.  https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2 CrossRefGoogle Scholar
  86. Lenoir A, Coste M (1996) Development of a practical diatom index of overall water quality applicable to the French national water board network. In: Whitton BA, Rott E (eds) Use of algae for monitoring rivers II. Institut fur Botanik. Univ Innsbruck, Innsbruck, pp 29–43Google Scholar
  87. Lobo EA, Wetzel CE, Ector L, Katoh K, Blanco S, Mayama S (2010) Response of epilithic diatom community to environmental gradients in subtropical temperate Brazilian rivers. Limnetica 29(2):323–340.  https://doi.org/10.23818/limn.29.27 CrossRefGoogle Scholar
  88. Lobo EA, Wetzel CE, Schuch M, Ector L (2014) Diatomáceas epilíticas como indicadores da qualidade da água em sistemas lóticos subtropicais e temperados brasileiros. Santa Cruz do Sul, EDUNISCGoogle Scholar
  89. Lobo EA, Schuch M, Heinrich CG, Costa AB, Düpont A, Wetzel CE, Ector L (2015) Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess 187(6):1–13.  https://doi.org/10.1007/s10661-015-4586-3 CrossRefGoogle Scholar
  90. Lobo EA, Heinrich CD, Schuch M, Düpont A, Costa AB, Wetzel CE, Ector L (2016a) Índice trófico da qualidade da água: Guia ilustrado para sistemas lóticos subtropicais e temperados brasileiros. EDUNISC E-Book, Santa Cruz do Sul www.unisc.br/edunisc Google Scholar
  91. Lobo EA, Heinrich CD, Schuch M, Wetzel CE, Ector L (2016b) Diatoms as bioindicators in rivers. p. 245–271. In: NECCHI Jr (ed) River Algae. Springer International PublishingGoogle Scholar
  92. Lobo MTMPS, Nogueira IS, Sgarbi LF, Kraus CN, Bomfim EO, Garnier J, Marques DM, Bonnet MP (2018) Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol Indic 95:579–588.  https://doi.org/10.1016/j.ecolind.2018.07.03 CrossRefGoogle Scholar
  93. Lobo EA, Freitas NW, Salinas VH (2019) Diatomeas como bioindicadores: Aspectos ecológicos de la respuesta de las algas a la eutrofización en América Latina. Mex J Biotechnol 4(1):1–24.  https://doi.org/10.29267/mxjb.2019.4.1.1 CrossRefGoogle Scholar
  94. Lumb A, Sharma TC, Bibeault JF (2011) A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual Expo Health 3(1):11–24.  https://doi.org/10.1007/s12403-011-0040-0 CrossRefGoogle Scholar
  95. Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2):143–170.  https://doi.org/10.1007/BF00007865 CrossRefGoogle Scholar
  96. Mackereth FJH, Heron J, Talling JF (1989) Water analysis: some revised methods for limnologists, 2nd edn. Freshwater Biological Association Scientific Publication, Ambleside.  https://doi.org/10.1002/iroh.19790640404 CrossRefGoogle Scholar
  97. Magesh NS, Krishnakumar S, Chandrasekar N, Soundranayagam JP (2013) Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab J Geosci 6(11):4179–4189.  https://doi.org/10.1007/s12517-012-0673-8 CrossRefGoogle Scholar
  98. Malherbe W, Mahlangu S, Ferreira M, Wepener V (2015) Fish and macroinvertebrate community composition of a floodplain wetland associated with the Harts River, South Africa, in relation to water quality and habitat parameters. J Afr J Aquat Sci 40(3):311–317.  https://doi.org/10.2989/16085914.2015.1076715 CrossRefGoogle Scholar
  99. Maurice-Bourgoin L, Bonnet MP, Martinez JM, Kosuth P, Cochonneau G, Moreira-Turcq P, Guyot JL, Vauchel P, Filizola N, Seyler P (2007) Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon River, Brazil. J Hydrol 335(1–2):140–156.  https://doi.org/10.1016/j.jhydrol.2006.11.023 CrossRefGoogle Scholar
  100. Mcardle BH, Anderson MJ (2013) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297.  https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 CrossRefGoogle Scholar
  101. McGrath DG, Almeida OT, Merry FD (2007) The influence of community management agreements on household economic strategies: cattle grazing and fishing agreements on the lower Amazon floodplain. Int J Commons 1(1):67–88.  https://doi.org/10.18352/ijc.54 CrossRefGoogle Scholar
  102. Meerhoff M, Jeppesen E (2010) Shallow lakes and ponds. In: Likens GE (ed) Lake ecosystem ecology, 1st. Academic Press, San Diego, pp 343–375Google Scholar
  103. Melack JM, Novo EMLM, Forsberg BR, Piedade MTF, Maurice L (2009) Floodplain ecosystem processes. Amazonia and Global Change 186:525–542CrossRefGoogle Scholar
  104. Metzeltin D, Lange-Bertalot H (1998) Tropical diatoms of the South America I. Iconographia Diatomologica vol. 5. A.R.G. Gantner Verlag K.G. KoenigsteinGoogle Scholar
  105. Metzeltin D, Lange-Bertalot H (2002) Diatoms from the “island continent” Madagascar. Iconographia Diatomologica vol. 11. A.R.G. Gantner Verlag K.G. KoenigsteinGoogle Scholar
  106. Metzeltin D, Lange-Bertalot H (2007) Tropical diatoms of the South America II. Iconographia Diatomologica vol. 18. A.R.G. Gantner Verlag K.G. KoenigsteinGoogle Scholar
  107. Miller JK, Farr SD (1971) Bimultivariate redundancy: a comprehensive measure of interbattery relationship. Multivar Behav Res 6(3):313–324.  https://doi.org/10.1207/s15327906mbr0603_4 CrossRefGoogle Scholar
  108. Montoya-Moreno Y, Aguirre-Ramírez N (2013) Knowledge to ecological preferences in a tropical epiphytic algae to use with eutrophication indicators. J Environ Prot 4(11):27–35.  https://doi.org/10.4236/jep.2013.411A1004 CrossRefGoogle Scholar
  109. Moore DRJ (1998) Ambient water quality criteria for organic carbon in British Columbia. Province of British Columbia. Ministry of Environment, Lands and Parks. Victoria. Website accessed on [2018/05/03]. http://www.env.gov.bc.ca/wat/wq/BCguidelines/orgcarbon/index.html
  110. Moreira-Filho H, Valente-Moreira IM (1981) Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais dos estados do Paraná, Santa Catarina e São Paulo, Boletim do Museu Botânico Municipal. 47:1–17Google Scholar
  111. Moschini-Carlos V (1999) Importância, estrutura e dinâmica da comunidade perifítica nos ecossistemas aquáticos continentais. In: Pompêo MLM (ed) Perspectivas na Limnologia do Brasil. Editora União, São Luís, pp 91–103Google Scholar
  112. Neill C, Deegan LA, Thomas SM, Cerri CC (2001) Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11(6):1817–1828.  https://doi.org/10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2 CrossRefGoogle Scholar
  113. Oksanen J, Kindt R, Legendre P, O’Hara RB, Stevens MHH (2007) Vegan: community ecology package. R Package version 1.8–8Google Scholar
  114. Opperman JJ, Moyle PB, Larsen EW, Florsheim JL, Manfree AD (2017) Floodplains: processes and management for ecosystem services. 1st edn, CaliforniaGoogle Scholar
  115. Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19.  https://doi.org/10.1007/s10750-008-9645-0 CrossRefGoogle Scholar
  116. Patrick RM, Reimer CW (1975) The diatoms of the United States, exclusive of Alaska and Hawaii. vol. 2. Monographs of the Academy of Natural Sciences of Philadelphia 13Google Scholar
  117. Perbiche-Neves G, Fileto C, Laço-Portinho J, Troguer A, Serafim-Júnior M (2017) Relations among planktonic rotifers, cyclopoid copepods, and water quality in two Brazilian reservoirs. Lat Am J Aquat Res 41(1):138–149.  https://doi.org/10.3856/vol41-issue1-fulltext-11 CrossRefGoogle Scholar
  118. Peres LGM, Gurgel H, Laques, A.E., 2018. Dinâmica da paisagem em planícies de inundação amazônicas: o caso do Lago Grande do Curuai, Pará, Brasil Confins Revue franco-brésilienne de géographie/Revista franco-brasilera de geografia 35.  https://doi.org/10.4000/confins.13010
  119. Peresin D, Torgan LC, Schulz UH, Crossetti LO (2014) Structure of potamoplankton along a gradient of preservation of riparian vegetation in subtropical streams. An Acad Bras Cienc 86(2):841–853.  https://doi.org/10.1590/0001-3765201420130318 CrossRefGoogle Scholar
  120. Pettit NE, Warfe DM, Close PG, Pusey BJ, Dobbs R, Davies C, Valdez D, Davies PM (2016) Carbon sources for aquatic food webs of riverine and lacustrine tropical waterholes with variable groundwater influence. Mar Freshw Res 68(3):442–445.  https://doi.org/10.1071/MF15365 CrossRefGoogle Scholar
  121. Pham TL (2017) Comparison between Water Quality Index (WQI) and biological indices, based on planktonic diatom for water quality assessment in the Dong Nai River, Vietnam. Pollution 3(2):311–323.  https://doi.org/10.7508/PJ.2017.02.012 CrossRefGoogle Scholar
  122. Phillips MJ, Swift LW, Blinn CR (2000) Best management practices for riparian areas. In: Verry ES, Hornbeck JW, Dolloff C (eds) Riparian management in forests of the continental Eastern United States. Lewis Publishers, CRC Press LLC, Boca Raton, pp 273–286Google Scholar
  123. Pinel SS, Bonnet MP, Da Silva JS, Cavalcanti Sr, R, Calmant S (2016) Hydrodynamics simulation of Amazonian seasonally flooded wetlands [abstract #H31B-1357]. In: AGU Fall Meeting. San Francisco, CaliforniaGoogle Scholar
  124. Pinto BV (2006) Características químicas e físico-químicas de águas subterrâneas do Estado do Rio de Janeiro. Dissertação de Mestrado. Brasil, Departamento de Química, Rio de JaneiroGoogle Scholar
  125. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  126. Round, F.E., 1993. A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality. Methods for the examination of water and associated materials. HMSO Publications, LondonGoogle Scholar
  127. Rudorff CM, Melack JM, Bates PD (2014) Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resour Res 50(1):619–634.  https://doi.org/10.1002/2013WR014091 CrossRefGoogle Scholar
  128. Saari GN, Wang Z, Brooks BW (2018) Revisiting inland hypoxia: diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life. Environ Sci Pollut Res 25(4):3139–3150.  https://doi.org/10.1007/s11356-017-8908-6 CrossRefGoogle Scholar
  129. Sant'Anna CL, Azevedo MTP, Werner VR, Dogo CR, Rios FR, de Carvalho LR (2008) Review of toxic species of cyanobacteria in Brazil. Algol Stud 126(1):251–265.  https://doi.org/10.1127/1864-1318/2008/0126-0251 CrossRefGoogle Scholar
  130. Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1):455–466.  https://doi.org/10.1007/s10750-007-0616-7 CrossRefGoogle Scholar
  131. Schuch M, Oliveira MA, Lobo EA (2015) Spatial response of epilithic diatom communities to downstream nutrient increases. Water Environment Research 87(6):547–558.  https://doi.org/10.2175/106143014X14062131178196 CrossRefGoogle Scholar
  132. Silva MSR, Miranda SAF, Santana GP (2016) Bacia Hidrográfica do Rio Amazonas: Condições de suas águas versos Resolução N 357/CONAMA/2005. Scientia Amazonia 6(2):83–90Google Scholar
  133. Simonsen R (1974) The diatom plankton of the Indian Ocean expedition of R.V. Meteor Forschungsergeb. Reihe D-Biol 19:1–66Google Scholar
  134. Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1(3):267–277Google Scholar
  135. Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, CambridgeGoogle Scholar
  136. Soares MCS, Huszar VLM, Roland F (2007) Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Res Appl 23(7):698–714.  https://doi.org/10.1002/rra.987 CrossRefGoogle Scholar
  137. Soranno PA, Cheruvelil KS, Wagner T, Webster KE, Bremigan MT (2015) Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS One 10(8):1–22.  https://doi.org/10.1371/journal.pone.0135454 CrossRefGoogle Scholar
  138. Starmach K, Wróbel S, Pasternak K (1976) Hydrobiologia. Limnologia, Państwowe Wydawnictwo Naukowe, WarszawaGoogle Scholar
  139. Strome DJ, Miller MC (1978) Photolytic changes in dissolved humic substances. Verhandlungen. Int Ver Theor Angew Limnol 20(2):1248–1254.  https://doi.org/10.1080/03680770.1977.11896681 CrossRefGoogle Scholar
  140. Sutadian AD, Muttil N, Yilmaz AG, Perera BJC (2016) Development of river water quality indices—a review. Environmental monitoring and assessment 188(1):58Google Scholar
  141. Szulc B (2009) Okrzemki bentosowe w ocenie jakości wody środkowego odcinka rzeki Pilicy. PhD Thesis, University of Łódź, Łódź, PolandGoogle Scholar
  142. Szulc B, Szulc K (2013) The use of the biological diatom index (BDI) for the assessment of water quality in the Pilica River, Poland. Oceanol Hydrobiol Stud 42(2):188–194.  https://doi.org/10.2478/s13545-013-0073-z CrossRefGoogle Scholar
  143. Uhelinger V (1964) Étude statistique des methodes de dénombrement planctonique. Arch Sci 17(2):121–123Google Scholar
  144. Utermöhl H (1958) Zur Vervollkommnung der quantitativen phytoplankton – methodic. Int Ver Theor Angew Limnol: Mitt 9(1):1–38Google Scholar
  145. Verhoeven JT, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21(2):96–103.  https://doi.org/10.1016/j.tree.2005.11.015 CrossRefGoogle Scholar
  146. Viaroli P, Bartoli M, Vymazal J (2016) Preface: wetlands biodiversity and processes—tools for conservation and management. Hydrobiologia 774(1):1–5.  https://doi.org/10.1007/s10750-016-2793-8 CrossRefGoogle Scholar
  147. Villa-Achupallas M, Rosado D, Aguilar S, Galindo-Riaño MD (2018) Water quality in the tropical Andes hotspot: the Yacuambi river (southeastern Ecuador). Sci Total Environ 633:50–58.  https://doi.org/10.1016/j.scitotenv.2018.03.165 CrossRefGoogle Scholar
  148. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green PA, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  149. Voulvoulis N, Arpon KD, Giakoumis T (2017) The EU water framework directive: from great expectations to problems with implementation. Sci Total Environ 575:358–366.  https://doi.org/10.1016/j.scitotenv.2016.09.228 CrossRefGoogle Scholar
  150. Wang YK, Stevenson RJ, Metzmeier L (2005) Development and evaluation of a diatom-based index of biotic integrity for the Interior Plateau Ecoregion, USA. J N Am Benthol Soc 24(4):990–1008CrossRefGoogle Scholar
  151. Wetzel CE, Ector L (2015) Taxonomy and ecology of Fragilaria microvaucheriae sp. nov. and comparison with the type materials of F. uliginosa and F. vaucheriae. Cryptogam Algol 36(3):271–289.  https://doi.org/10.7872/crya/v36.iss3.2015.271 CrossRefGoogle Scholar
  152. Zheng H, Li Y, Robinson BE, Liu G, Ma D, Wang F, Lu F, Ouyang Z, Daily GC (2016) Using ecosystem service trade-offs to inform water conservation policies and management practices. Front Ecol Environ 14(10):527–532.  https://doi.org/10.1002/fee.1432 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Maria Tereza Morais Pereira Souza Lobo
    • 1
    • 2
    Email author
  • Paulo Sérgio Scalize
    • 1
    • 3
  • Cleber Nunes Kraus
    • 4
  • Weliton José da Silva
    • 5
  • Jérémie Garnier
    • 6
    • 7
  • David da Motta Marques
    • 8
    • 9
  • Marie-Paule Bonnet
    • 7
    • 9
  • Ina de Souza Nogueira
    • 1
    • 2
    • 10
  1. 1.Programa de Pós-graduação Ciências AmbientaisUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Laboratório de Análise e Gerenciamento Ambiental de Recursos Hídricos (LAMARH)Universidade Federal de GoiásGoiâniaBrazil
  3. 3.Escola de Engenharia Civil e AmbientalGoiâniaBrazil
  4. 4.Programa de Pós-graduação em Ciências AmbientaisUniversidade de BrasíliaPlanaltinaBrazil
  5. 5.Departamento de Biologia Animal e VegetalUniversidade Estadual de LondrinaLondrinaBrazil
  6. 6.Laboratório de Geoquímica, Instituto de GeociênciasUniversidade de BrasíliaBrasíliaBrazil
  7. 7.Joint International Laboratory LMI OCE ‘Observatory of Environmental Change’BrasíliaBrazil
  8. 8.Instituto de Pesquisas HidráulicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  9. 9.Institut de Recherche pour le DéveloppementUMR Espace-DEVMontpellierFrance
  10. 10.Departamento de BotânicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations