Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impacts of anthropogenic activities and calculation of the relative risk of violating surface water quality standards established by environmental legislation: a case study from the Piracicaba and Paraopeba river basins, Brazil

  • 29 Accesses

Abstract

The nonparametric test of Kruskal–Wallis and relative risk were used to evaluate surface water quality allowed to an identification of the most degraded water bodies in Piracicaba River and Paraopeba River basins, two important hydrographic basins in Brazil. Total manganese, dissolved iron, and fecal contamination indicator were considered the most relevant parameters for the characterization of water quality in the basins. The Peixe River, in Nova Era, and Pedras Creek, in Betim, were considered the most impacted water bodies in the Piracicaba River and Paraopeba River basins, respectively. The analysis of violations and the relative risk confirmed that both basins are subject to impacts resulting from economic activities. On comparing the relative risks, the Paraopeba River basin showed a higher risk of violation for 5-day biological oxygen demand (BOD5), total manganese, total phosphorus, total suspended solids, and turbidity, while the Piracicaba River basin showed a higher risk of violation for fecal contamination indicator. The release of domestic sewage and industrial effluents, mining activities, and diffuse pollution from agriculture and pasture areas were responsible for the surface water quality deterioration in these basins. The results show the need for investment in basic sanitation, improved treatment efficiency for industrial effluents, adequate soil management, riparian vegetation preservation, and environmental education actions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Agência Nacional de Águas – ANA (2017) Atlas Esgotos: Despoluição de bacias hidrográficas. Brasília, 92p. (in Portuguese)

  2. APHA, AWWA, WEF (2012) Standard methods for examination of water and wastewater, 22nd edn. American public health association, Washington 1360p

  3. Bernardes WM, Callegari-Jacques SM (1998) Epidemiologia: Pesquisa populacional: Estudos analiticos: Medidas de escolha: Risco relativo: Odds ratio. J Pediatr 74(3):247–251 (in Portuguese)

  4. Bezerra LAV, Paulino WD, Garcez DS, Becker H, Sánchez-Botero JI (2014) Limnological characteristics of a reservoir in semiarid northeastern Brazil subject to intensive tilapia farming (Orechromis niloticus Linnaeus, 1758). Acta Limnol Bras 26(1):47–59

  5. Calazans GM, Pinto CC, Costa EP, Perini AA, Oliveira SC (2018) The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil. Environ Monit Assess 190:2–17. https://doi.org/10.1007/s10661-018-6873-2

  6. Christofaro C, Leão MMD, Oliveira SC, Viana DT, Amorim CC, Carvalho MD (2017) Spatio-temporal variations of water quality in Nova Ponte reservoir, Araguari River basin, Brazil. Water Sci Technol Water Supply 17:1507–1514. https://doi.org/10.2166/ws.2017.055

  7. Companhia Ambiental do Estado de São Paulo (CETESB) (2009) Significado ambiental e sanitário das variáveis de qualidade das águas e dos sedimentos e metodologias analíticas e de amostragem. https://cetesb.sp.gov.br/agua/aguas-superficiais/125-variaveis-de-qualidade-das-aguas-e-dos-sedimentos. Accessed 10 June 2018. (in Portuguese)

  8. Costa EP, Pinto CC, Soares ALC, Melo LDV, Oliveira SC (2017) Evaluation of violations in water quality standards in the monitoring network of São Francisco River basin, the third largest in Brazil. Environ Monit Assess 189:2–16

  9. Fundação Estadual do Meio Ambiente (FEAM) (2013) Plano para incremento do percentual de tratamento de esgotos sanitários na Bacia Hidrográfica do Rio Piracicaba / Fundação Estadual do Meio Ambiente. Belo Horizonte. (in Portuguese)

  10. Instituto Mineiro de Gestão das Águas (IGAM) (2013) Identificação de municípios com condição crítica para a qualidade da água na bacia do rio Paraopeba. Belo Horizonte. (in Portuguese)

  11. Jung KY, Lee K, Ima TH (2016) Evaluation of water quality for the Nakdong River watershed using multivariate analysis. Environ Technol Innov 5:67–82

  12. Junior BSG (2015) Caracterização do processo de poluição das águas superficiais da Bacia Hidrográfica do Rio Jucu, estado do Espírito Santo, Brasil. Agro@mbiente On-line 9(3):235–242 (in Portuguese)

  13. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

  14. Last A, Wilson S, Rao G (2004) Relative risks and odds ratios: what’s the difference? J Fam Pract 53(2):108

  15. Lopes FB, De Andrade EM, Meireles ACM, Becker H, Batista AA (2014) Assessment of the water quality in a large reservoir in semiarid region of Brazil. Rev Bras Eng Agric e Ambient 18(4):437–445

  16. Minas Gerais (2008) State environmental policy council (COPAM) and state water resources council (CERH). Normative deliberation n. 01, from may 05, 2008. Provides for the classification of water bodies and environmental guidelines for their classification as well as establishes the conditions and standards for effluent discharge and other measures. (in Portuguese)

  17. Mohamed I, Othman F, Ibrahim AIN, Alaa-Eldin ME, Yunus RM (2015) Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environ Monit Assess 187(4182):1–12. https://doi.org/10.1007/s10661-014-4182-y

  18. Naghettini M, Pinto EJA (2007) Hidrologia Estatística. Belo Horizonte, MG, BR: CPRM. (in Portuguese)

  19. Oliveira SC, Amaral RC, Almeida KCB, Pinto CC (2017) Qualidade das águas superficiais do Médio São Francisco após a implantação dos perímetros irrigados de Gorutuba/Lagoa Grande e Jaíba. Eng Sanit Ambient 22:711–721. https://doi.org/10.1590/s1413-41522017136784 (in Portuguese)

  20. Omo-Irabor OO, Olobaniyi SB, Oduyemi K, Akunna J (2008) Surface and groundwater water quality assessment using multivariate analytical methods: a case study of the Western Niger Delta, Nigeria. Phys Chem Earth 33:666–673

  21. Pearson K (1900) X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London, Edinburgh, Dublin Philos Mag J Sci 50(302):157–175

  22. Pinto CC, Andrade SB, Pinto EJA, Oliveira SC (2017) Análise de tendência de dados de concentração e carga dos parâmetros físicos, químicos e biológicos da bacia do rio Verde. Rev Bras Recur Hidr 22:40. https://doi.org/10.1590/2318-0331.0117160030 (in Portuguese)

  23. Pinto CC, Calazans GM, Oliveira SC (2019) Assessment of spatial variations in the surface water quality of the Velhas River basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environ Monit Assess 191(3):164

  24. Plano de Ação de Recursos Hídricos da Unidade de Planejamento e Gestão dos Recursos Hídricos DO2 (PARH Piracicaba) (2010) Consórcio Ecoplan-Lume Ambiental. http://www.cbhdoce.org.br/wp-content/uploads/2015/01/PARH_Piracicaba.pdf. Accessed 16 August 2018. (in Portuguese)

  25. Schmidt CO, Kohlmann T (2008) When to use the odds ratio or the relative risk? Int J Public Health 53:165–167

  26. Schwertmana NC, Owensa MA, Adnanb R (2004) A simple more general boxplot method for identifying outliers. Comput Stat Data Anal 47(1):165–174

  27. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–599

  28. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

  29. Sistema de Informações Geográficas da Mineração (SIGMINE) (2015) Agência Nacional de Mineração. http://www.anm.gov.br/assuntos/ao-minerador/sigmine. Accessed 16 August 2018. (in Portuguese)

  30. Soares WL, Porto MF (2007) Atividade agrícola e externalidade ambiental: uma análise a partir do uso de agrotóxicos no cerrado brasileiro. Cien Saude Colet 12(1):131–143. https://doi.org/10.1590/S1413-81232007000100016 (in Portuguese)

  31. Souza A, Bertossi APA, Lastoria G (2015) Diagnóstico temporal e espacial da qualidade das águas superficiais do Córrego Bandeira, Campo Grande, MS. Revista Agro@mbiente On-line 9(3):227–234. https://doi.org/10.18227/1982-8470ragro.v9i3.2312 (in Portuguese)

  32. Stephenson DB (2000) Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast 15:221–232

  33. Trindade ALC, de Almeida KC, Barbosa PE, Oliveira SMAC (2017) Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do Rio das Velhas, estado de Minas Gerais. Eng Sanit e Ambient 22(1):13–24. https://doi.org/10.1590/s1413-41522016131457 (in Portuguese)

  34. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

  35. Woolf B (1955) On estimating the relation between blood group and diseases. Ann Hum Genet 19:251–253

  36. Zhang X, Wang Q, Liu Y, Wu J, Yu M (2011) Application of multivariate statistical techniques in the assessment of water quality in the southwest new territories and Kowloon, Hong Kong. Environ Monit Assess 173(1–4):17–27. https://doi.org/10.1007/s10661-010-1366-y

Download references

Acknowledgments

The authors would like to thank the Instituto Mineiro de Gestão das Águas (IGAM), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their support and cooperation during the course of this research.

Author information

Correspondence to Sílvia Corrêa Oliveira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soares, A.L.C., Pinto, C.C. & Oliveira, S.C. Impacts of anthropogenic activities and calculation of the relative risk of violating surface water quality standards established by environmental legislation: a case study from the Piracicaba and Paraopeba river basins, Brazil. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-07647-1

Download citation

Keywords

  • Water quality
  • Nonparametric tests
  • Relative risk
  • Paraopeba River basin
  • Piracicaba River basin
  • Brazil