Advertisement

Development of quantitative structure-property relationship model for predicting the field sampling rate (Rs) of Chemcatcher passive sampler

  • Yaqi Wang
  • Huihui LiuEmail author
  • Xianhai YangEmail author
Research Article
  • 18 Downloads

Abstract

Passive sampling technology has been considered as a promising tool to measure the concentration of environmental contaminants. With this technology, sampling rate (Rs) is an important parameter. However, as experimental methods employed to obtain the Rs value of a given compound were time-consuming, laborious, and expensive. A cost-effective method for deriving Rs is urgent. In addition, considering the great dependence of Rs value on water matrix properties, the laboratory measured Rs may not be a good alternative for field Rs. Thus, obtaining the field Rs is very necessary. In this study, a multiparameter quantitative structure-property relationship (QSPR) model was constructed for predicting the field Rs of 91 polar to semi-polar organic compounds. The determination coefficient (R2Train), leave-one-out cross-validated coefficient (Q2LOO), bootstrap coefficient (Q2BOOT), and root mean square error (RMSETrain) of the training set were 0.772, 0.706, 0.769, and 0.230, respectively, while the external validation coefficient (Q2EXT) and RMSEEXT of the validation set were 0.641 and 0.253, respectively. According to the acceptable criteria (Q2 > 0.600, R2 > 0.700), the model had good robustness, goodness-of-fit, and predictive performances. Therefore, we could use the model to fill the data gap for substances within the applicability domain on their missing Rs value.

Keywords

Field sampling rate (RsPassive sampling Chemcatcher Quantitative structure-property relationship (QSPR) Applicability domain 

Notes

Acknowledgments

The study was supported by National Natural Science Foundation of China (No. 41671489, No. 21507038, No. 21507061).

Transparency document

The transparency document associated with this article can be found in the online version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2020_7616_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 31 kb)

References

  1. Allan IJ, Booij K, Paschke A, Vrana B, Mills GA, Greenwood R (2009) Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ Sci Technol 43:5383–5390.  https://doi.org/10.1021/es900608w CrossRefGoogle Scholar
  2. Arpin-Pont L, Bueno MJM, Gomez E, Fenet H (2016) Occurrence of PPCPs in the marine environment: a review. Environ Sci Pollut Res 23:4978–4991.  https://doi.org/10.1007/s11356-014-3617-x CrossRefGoogle Scholar
  3. Bao LJ, Xu SP, Liang Y, Zeng EY (2012) Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environ Toxicol Chem 31:1012–1018.  https://doi.org/10.1002/etc.1788 CrossRefGoogle Scholar
  4. Booij K, Hofmans HE, Fischer CV, Van Weerlee EM (2003) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37:361–366.  https://doi.org/10.1021/es025739i CrossRefGoogle Scholar
  5. Buzier R, Guibal R, Lissalde S, Guibaud G (2019) Limitation of flow effect on passive sampling accuracy using POCIS with the PRC approach or o-DGT: a pilot-scale evaluation for pharmaceutical compounds. Chemosphere 222:628–636.  https://doi.org/10.1016/j.chemosphere.2019.01.181 CrossRefGoogle Scholar
  6. Charriau A, Lissalde S, Poulier G, Mazzella N, Buzier R, Guibaud G (2016) Overview of the Chemcatcher (R) for the passive sampling of various pollutants in aquatic environments part a: principles, calibration, preparation and analysis of the sampler. Talanta 148:556–571.  https://doi.org/10.1016/j.talanta.2015.06.064 CrossRefGoogle Scholar
  7. Chen CE, Zhang H, Jones KC (2012) A novel passive water sampler for in situ sampling of antibiotics. J Environ Monitor 14:1523–1530.  https://doi.org/10.1039/c2em30091e CrossRefGoogle Scholar
  8. Chen CE, Zhang H, Ying GG, Zhou LJ, Jones KC (2015) Passive sampling: a cost-effective method for understanding antibiotic fate, behaviour and impact. Environ Int 85:284–291.  https://doi.org/10.1016/j.envint.2015.10.001 CrossRefGoogle Scholar
  9. Chirico N, Gramatica P (2012) Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52:2044–2058.  https://doi.org/10.1021/ci300084j CrossRefGoogle Scholar
  10. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375.  https://doi.org/10.1289/ehp.5758 CrossRefGoogle Scholar
  11. Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen WC, Novak PJ, Rice PJ, Swackhamer DL (2016) Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci Total Environ 551:605–613.  https://doi.org/10.1016/j.scitotenv.2016.02.056 CrossRefGoogle Scholar
  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. (2016) Gaussian, Inc., Wallingford CT, Gaussian 16, Revision A.03Google Scholar
  13. Godlewska K, Stepnowski P, Paszkiewicz M (2019) Application of the polar organic chemical integrative sampler for isolation of environmental micropollutants - a review. Crit Rev Anal Chem.  https://doi.org/10.1080/10408347.2019.1565983 CrossRefGoogle Scholar
  14. Gong XY, Li K, Wu CL, Wang L, Sun HW (2018) Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Environ Anal Chem 17:23–33.  https://doi.org/10.1016/j.teac.2018.01.002 CrossRefGoogle Scholar
  15. Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard JP, Brizard Y, Guibaud G (2018) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut Res 25:14280–14293.  https://doi.org/10.1007/s11356-017-9883-7 CrossRefGoogle Scholar
  16. Gunold R, Schäfer RB, Paschke A, Schüürmann G, Liess M (2008) Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environ Pollut 155:52–60.  https://doi.org/10.1016/j.envpol.2007.10.037 CrossRefGoogle Scholar
  17. Harman C, Allan IJ, Vermeirssen EL (2012) Calibration and use of the polar organic chemical integrative sampler--a critical review. Environ Toxicol Chem 31:2724–2738.  https://doi.org/10.1002/etc.2011 CrossRefGoogle Scholar
  18. Jeong Y, Schaffer A, Smith K (2018) A comparison of equilibrium and kinetic passive sampling for the monitoring of aquatic organic contaminants in German rivers. Water Res 145:248–258.  https://doi.org/10.1016/j.watres.2018.08.016 CrossRefGoogle Scholar
  19. Klein CT, Kaiser D, Ecker G (2004) Topological distance based 3D descriptors for use in QSAR and diversity analysis. J Chem Inf Comput Sci 44:200–209.  https://doi.org/10.1021/ci0256236 CrossRefGoogle Scholar
  20. Li HX, Helm PA, Metcalfe CD (2010) Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environ Toxicol Chem 29:751–762.  https://doi.org/10.1002/etc.104 CrossRefGoogle Scholar
  21. Li YW, Shi XL, Zhang QZ, Hu JT, Chen JM, Wang WX (2014) Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT. Environ Sci Technol 48:5008–5016.  https://doi.org/10.1021/es405230j CrossRefGoogle Scholar
  22. Li Y, Yang CM, Bao YJ, Ma XR, Lu GH, Li Y (2016) Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate. Environ Sci Pollut Res 23:16096–16103.  https://doi.org/10.1007/s11356-016-6791-1 CrossRefGoogle Scholar
  23. Li Y, Yao C, Zha D, Yang W, Lu G (2018) Selection of performance reference compound (PRC) for passive sampling of pharmaceutical residues in an effluent dominated river. Chemosphere 211:884–892.  https://doi.org/10.1016/j.chemosphere.2018.07.179 CrossRefGoogle Scholar
  24. Li C, Zheng SS, Li TT, Chen JW, Zhou JH, Su LM, Zhang YN, Crittenden JC, Zhu SY, Zhao YH (2019) Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Water Res 151:468–477.  https://doi.org/10.1016/j.watres.2018.12.010 CrossRefGoogle Scholar
  25. Lin SY, Yang XH, Liu HH (2019) Development of liposome/water partition coefficients predictive models for neutral and ionogenic organic chemicals. Ecotoxicol Environ Saf 179:40–49.  https://doi.org/10.1016/j.ecoenv.2019.04.036 CrossRefGoogle Scholar
  26. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224.  https://doi.org/10.1016/j.envint.2013.06.012 CrossRefGoogle Scholar
  27. Liu HH, Wong CS, Zeng EY (2013) Recognizing the limitations of performance reference compound (PRC)-calibration technique in passive water sampling. Environ Sci Technol 47:10104–10105.  https://doi.org/10.1021/es403353d CrossRefGoogle Scholar
  28. Liu HH, Yang XH, Lu R (2016) Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin. Chemosphere 156:1–7.  https://doi.org/10.1016/j.chemosphere.2016.04.077 CrossRefGoogle Scholar
  29. Liu HH, Wei MB, Yang XH, Yin C, He X (2017) Development of TLSER model and QSAR model for predicting partition coefficients of hydrophobic organic chemicals between low density polyethylene film and water. Sci Total Environ 574:1371–1378.  https://doi.org/10.1016/j.scitotenv.2016.08.051 CrossRefGoogle Scholar
  30. Lu LP, Zhan TJ, Ma M, Xu C, Wang JP, Zhang CL, Liu WP, Zhuang SL (2018) Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β: in vitro, in vivo, and molecular dynamics simulation study. Environ Sci Technol 52:6617–6625.  https://doi.org/10.1021/acs.est.8b00776 CrossRefGoogle Scholar
  31. Luo X, Yang X, Qiao X, Wang Y, Chen J, Wei X, Peijnenburg WJ (2017) Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals. Environ Sci Process Impacts 19:350–356.  https://doi.org/10.1039/c6em00707d CrossRefGoogle Scholar
  32. MacLeod SL, McClure EL, Wong CS (2007) Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environ Toxicol Chem 26:2517–2529.  https://doi.org/10.1897/07-238.1 CrossRefGoogle Scholar
  33. Miller TH, Baz-Lomba JA, Harman C, Reid MJ, Owen SF, Bury NR, Thomas KV, Barron LP (2016) The first attempt at non-linear in silico prediction of sampling rates for polar organic chemical integrative samplers (POCIS). Environ Sci Technol 50:7973–7981.  https://doi.org/10.1021/acs.est.6b01407 CrossRefGoogle Scholar
  34. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614.  https://doi.org/10.1016/j.scitotenv.2017.03.286 CrossRefGoogle Scholar
  35. Morin N, Camilleri J, Cren-Olivé C, Coquery M, Miège C (2013) Determination of uptake kinetics and sampling rates for 56 organic micropollutants using “pharmaceutical” POCIS. Talanta 109:61–73.  https://doi.org/10.1016/j.talanta.2013.01.058 CrossRefGoogle Scholar
  36. Morrison SA, Belden JB (2016) Characterization of performance reference compound kinetics and analyte sampling rate corrections under three flow regimes using nylon organic chemical integrative samplers. J Chromatogr A 1466:1–11.  https://doi.org/10.1016/j.chroma.2016.08.061 CrossRefGoogle Scholar
  37. Moschet C, Vermeirssen EL, Singer H, Stamm C, Hollender J (2015) Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Res 71:306–317.  https://doi.org/10.1016/j.watres.2014.12.043 CrossRefGoogle Scholar
  38. Novic AJ, O'Brien DS, Kaserzon SL, Hawker DW, Lewis SE, Mueller JF (2017) Monitoring herbicide concentrations and loads during a flood event: a comparison of grab sampling with passive sampling. Environ Sci Technol 51:3880–3891.  https://doi.org/10.1021/acs.est.6b02858 CrossRefGoogle Scholar
  39. OECD (2007) Guidance document on the validation of (quantitative) structure activity relationships [(Q)SAR] models. OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69, ParisGoogle Scholar
  40. Ouyang GF, Pawliszyn J (2007) Configurations and calibration methods for passive sampling techniques. J Chromatogr A 1168:226–235.  https://doi.org/10.1016/j.chroma.2007.01.133 CrossRefGoogle Scholar
  41. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29.  https://doi.org/10.1016/j.chemolab.2015.04.013 CrossRefGoogle Scholar
  42. Roy K, Ambure P, Aher RB (2017) How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom Intell Lab Syst 162:44–54.  https://doi.org/10.1016/j.chemolab.2017.01.010 CrossRefGoogle Scholar
  43. Sharma MC, Sharma S, Sahu NK, Kohli DV (2013) QSAR studies of some substituted imidazolinones angiotensin II receptor antagonists using partial least squares regression (PLSR) method based feature selection. J Saudi Chem Soc 17:219–225.  https://doi.org/10.1016/j.jscs.2011.03.012 CrossRefGoogle Scholar
  44. Shaw M, Eaglesham G, Mueller JF (2009) Uptake and release of polar compounds in SDB-RPS Empore disks; implications for their use as passive samplers. Chemosphere 75:1–7.  https://doi.org/10.1016/j.chemosphere.2008.11.072 CrossRefGoogle Scholar
  45. Su PR, Zhu HC, Shen ZM (2016) QSAR models for removal rates of organic pollutants adsorbed by in situ formed manganese dioxide under acid condition. Environ Sci Pollut Res 23:3609–3620.  https://doi.org/10.1007/s11356-015-5569-1 CrossRefGoogle Scholar
  46. Sun Q, Li MY, Ma C, Chen XQ, Xie XQ, Yu CP (2016) Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ Pollut 208:371–381.  https://doi.org/10.1016/j.envpol.2015.10.003 CrossRefGoogle Scholar
  47. Thomatou AA, Zacharias I, Hela D, Konstantinou I (2011) Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers. Environ Sci Pollut Res 18:1222–1233.  https://doi.org/10.1007/s11356-010-0436-6 CrossRefGoogle Scholar
  48. Toropova AP, Toropov AA, Benfenati E, Castiglioni S, Bagnati R, Passoni A, Zuccato E, Fanelli R (2018) Quasi-SMILES as a tool to predict removal rates of pharmaceuticals and dyes in sewage. Process Saf Environ 118:227–233.  https://doi.org/10.1016/j.psep.2018.07.003 CrossRefGoogle Scholar
  49. Vallejo A, Prieto A, Moeder M, Usobiaga A, Zuloaga O, Etxebarria N, Paschke A (2013) Calibration and field test of the polar organic chemical integrative samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC). Water Res 47:2851–2862.  https://doi.org/10.1016/j.watres.2013.02.049 CrossRefGoogle Scholar
  50. Vermeirssen EL, Dietschweiler C, Escher BI, van der Voet J, Hollender J (2013) Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Anal Bioanal Chem 405:5225–5236.  https://doi.org/10.1007/s00216-013-6878-1 CrossRefGoogle Scholar
  51. Vrana B, Mills GA, Kotterman M, Leonards P, Booij K, Greenwood R (2007) Modelling and field application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic organic pollutants in water. Environ Pollut 145:895–904.  https://doi.org/10.1016/j.envpol.2006.04.030 CrossRefGoogle Scholar
  52. Wang XQ, Meng XJ, Li F, Ding JW, Ji CL, Wu HF (2019) The critical factors affecting typical organophosphate flame retardants to mimetic biomembrane: an integrated in vitro and in silico study. Chemosphere 226:159–165.  https://doi.org/10.1016/j.chemosphere.2019.03.130 CrossRefGoogle Scholar
  53. Wei MB, Yang XH, Watson P, Yang FF, Liu HH (2018) Development of QSAR model for predicting the inclusion constants of organic chemicals with α-cyclodextrin. Environ Sci Pollut Res 25:17565–17574.  https://doi.org/10.1007/s11356-018-1917-2 CrossRefGoogle Scholar
  54. Xie HJ, Chen JW, Chen QN, Chen CE, Du J, Tan F, Zhou CZ (2018a) Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Sci Total Environ 618:1605–1612.  https://doi.org/10.1016/j.scitotenv.2017.09.330 CrossRefGoogle Scholar
  55. Xie HJ, Chen QN, Chen JW, Chen CE, Du J (2018b) Investigation and application of diffusive gradients in thin-films technique for measuring endocrine disrupting chemicals in seawaters. Chemosphere 200:351–357.  https://doi.org/10.1016/j.chemosphere.2018.02.096 CrossRefGoogle Scholar
  56. Xu J, Zhang H, Wang LX, Ye WX, Xu WL, Li ZC (2010) QSPR analysis of infinite dilution activity coefficients of chlorinated organic compounds in water. Fluid Phase Equilib 291:111–116.  https://doi.org/10.1016/j.fluid.2009.12.032 CrossRefGoogle Scholar
  57. Xu T, Chen JW, Wang ZY, Tang WH, Xia DM, Fu ZQ, Xie HB (2019) Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation. Environ Sci Technol 53:5828–5837.  https://doi.org/10.1021/acs.est.9b00574 CrossRefGoogle Scholar
  58. Yang CM, Li Y, Zha DP, Lu GH, Sun Q, Wu DH (2017) A passive sampling method for assessing the occurrence and risk of organophosphate flame retardants in aquatic environments. Chemosphere 167:1–9.  https://doi.org/10.1016/j.chemosphere.2016.09.141 CrossRefGoogle Scholar
  59. Yang XH, Ou W, Xi Y, Chen JW, Liu HH (2019) Emerging polar phenolic disinfection byproducts are high-affinity human transthyretin disruptors: an in vitro and in silico study. Environ Sci Technol 53:7019–7028.  https://doi.org/10.1021/acs.est.9b00218 CrossRefGoogle Scholar
  60. Zhu TY, Wu J, He CD, Fu DF, Wu J (2018) Development and evaluation of MTLSER and QSAR models for predicting polyethylene-water partition coefficients. J Environ Manag 223:600–606.  https://doi.org/10.1016/j.jenvman.2018.06.039 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations