Drawing the baseline of trace element levels in the vulnerable Mediterranean osprey Pandion haliaetus: variations by breeding location, habitats, and egg components

  • Flavio MontiEmail author
  • Nicola Bianchi
  • Andrea Sforzi
  • Claudio Leonzio
  • Stefania Ancora
Research Article


Due to its peculiarity to accumulate environmental contaminants, the osprey Pandion haliaetus is a sentinel species for the biomonitoring of contaminants in aquatic ecosystems. Despite this, no information on trace element concentration exists for the Mediterranean area, where relict and vulnerable osprey populations exist. We evaluated the geographical patterns of heavy metals and selenium in osprey eggs from three different populations of the Mediterranean basin (Balearic Islands, Corsica, and Tuscany), to identify any possible contaminant sources. Pattern of metal concentration followed the order: Fe > Zn > Cu > Se > Hg > Pb > Cd. Differences in contaminant concentrations between habitats and among egg components were found. Egg content and inner membrane showed higher mercury levels (1.06 ± 0.89 and 0.67 ± 0.62 mg/kg dw, respectively) than those recorded in the eggshell. Mercury concentration was ca. two times higher in marine than in wetland samples, and even higher (3.6 times) when referred to the eggshell. Cu, Fe, Zn, and Se had higher concentration in the inner membrane. We stress how the choice of the biological material can have significant implications for the correct evaluation of contamination. Our study represents a first regional scale survey for the vulnerable Mediterranean osprey populations and provides baseline data for their long-term biomonitoring.


Eggs Trace elements Raptor Bioindicators Contamination Mediterranean Sea Pandion haliaetus 



The Tuscan Archipelago National Park (Italy) financially supported this research. We are also grateful to the Maremma Regional Park Agency (IT), Parc Naturel Régional de Corse (FR), and to the Consejería de Medio Ambiente y Territorio (Govern Illes Balears - SP). For their invaluable support in fieldwork activities and in providing samples, the authors thank Rafel Triay Bagur and Antoni Muñoz Navarro (Balearic Islands), Jean Marie Dominici (Corsica) and Giampiero Sammuri, Vincenzo Rizzo Pinna, Francesco Pezzo, Guido Alari, and Alessandro Troisi (Tuscany). Giacomo Mariotti for his contribution to preparative processes and analytical determinations. Charles J. Henny greatly helped with comments and suggestions on a first draft of this article.

Supplementary material

11356_2019_7591_MOESM1_ESM.docx (70 kb)
ESM 1 (DOCX 70 kb)


  1. Ackerman JT, Herzog MP, Schwarzbach SE (2013) Methylmercury is the predominant form of mercury in bird eggs: a synthesis. Environ Sci Technol 47:2052–2060CrossRefGoogle Scholar
  2. Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA (2016) Maternal transfer of contaminants in birds: mercury and selenium concentrations in parents and their eggs. Environ Pollut 210:145–154CrossRefGoogle Scholar
  3. Anderson DW, Hickey JJ (1972) Eggshell changes in certain North American birds. Proc Internat Ornithol Congr 15:514–540Google Scholar
  4. ARCADIS (2012) Trace element concentrations in great blue heron and osprey: 2009-2010. Tennessee Valley Authority, Ash Recovery Project, Kingston, TennesseeGoogle Scholar
  5. Audet DJ, Scott DS, Wiemeyer SN (1992) Organochlorine and mercury in osprey eggs from the eastern United States. J Raptor Res 26:219–224Google Scholar
  6. Bechard MJ, Perkins DN, Kaltenecker GS, Alsup S (2009) Mercury contamination in Idaho bald eagles, (Haliaeetus leucocephalus). Bull Environ Contam Toxicol 83:698–702CrossRefGoogle Scholar
  7. Bianchi N, Baccetti N, Leonzio C, Giovacchini P, Ancora S (2018) Temporal and geographical variations of mercury and selenium in eggs of Larus michahellis and Larus audouinii from central Mediterranean islands. Chem Ecol 34(7):595–609. CrossRefGoogle Scholar
  8. Brasso RL, Abel S, Polito MJ (2012) Pattern of mercury allocation into egg components is independent of dietary exposure in Gentoo penguins. Arch Environ Contam Toxicol 62:494–501CrossRefGoogle Scholar
  9. Buck J, Kaiser JL (2011). Contaminant concentrations in osprey (Pandion haliaetus) eggs from Portland harbor and surrounding areas: data summary report. Portland Natural Resources Trustee Council. Accessed online at: on October 29, 2011
  10. Burger J (2006) Bioindicators: a review of their use in the environmental literature 1970–2005. Environ Bioindic 1:136–144CrossRefGoogle Scholar
  11. Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T (2012) Interspecific and intraspecific variation in selenium: mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium. Sci Total Environ 431:46–56CrossRefGoogle Scholar
  12. Chen C, Amirbahman A, Fisher N, Harding G, Lamborg C, Nacci D, Taylor D (2008) Methylmercury in marine ecosystems: spatial patterns and processes of production, bioaccumulation, and biomagnification. EcoHealth 5(4):399–408. CrossRefGoogle Scholar
  13. CIBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos) (2011) Reintroduction of the osprey (Pandion haliaetus) in Portugal. Annu RepGoogle Scholar
  14. Clark KE, Stansley W, Niles LJ (2001) Changes in contaminant levels in New Jersey osprey eggs and prey, 1989 to 1998. Arch Environ Contam Toxicol 40:277–284CrossRefGoogle Scholar
  15. Danovaro R (2003) Pollution threats in the Mediterranean Sea: an overview. Chem Ecol 19:15–32CrossRefGoogle Scholar
  16. Dauwe T, Bervoets L, Blust R et al (1999) Are eggshells and egg contents of great and blue tits suitable as indicators of heavy metal pollution? Belg J Zool 129:439–447Google Scholar
  17. Des Granges JL, Rodrigue J, Tardif B, Laperle M (1998) Mercury accumulation and biomagnification in osprey (Pandion haliaetus) in the James Bay and Hudson Bay regions of Quebec. Arch Environ Contam Toxicol 35:330–341CrossRefGoogle Scholar
  18. Dmowski K (1999) Birds as bioindicators of heavy metal pollution: review and examples concerning European species. Acta Orn 34:1–23Google Scholar
  19. Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Gon MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P (2008) Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). Environ Pollut 156:951–958CrossRefGoogle Scholar
  20. Durant JM, Massemin S, Thouzeau C, Handrich Y (2000) Body reserves and nutritional needs during laying preparation in barn owls. J Comp Physiol B Biochem Syst Environ Physiol 170:253–260CrossRefGoogle Scholar
  21. EEA (2019) Contaminants in Europe’s seas—moving towards a clean, non-toxic marine environment. Eur Environ Agency 2019, ISBN 978-92-9480-058-9.
  22. Eisler R (2010) Compendium of trace metals and marine biota. Elsevier, OxfordGoogle Scholar
  23. Elliott JE, Machmer MM, Henny CJ, Wilson LK, Norstrom RJ (1998) Contaminants in ospreys from the Pacific Northwest: I. Trends and patterns in polychlorinated dibenzo-pdioxins and dibenzofurans in eggs and plasma. Arch Environ Contam Toxicol 35:620–631CrossRefGoogle Scholar
  24. Elliott JE, Machmer MM, Wilson LK, Henny CJ (2000) Contaminants in ospreys from the Pacific Northwest: II. Organochlorine pesticides, polychlorinated biphenyls, and mercury, 1991–1997. Arch Environ Contam Toxicol 38:93–106CrossRefGoogle Scholar
  25. Elliott JE, Morrissey CA, Henny CJ, Inzunza ER, Shaw P (2007) Satellite telemetry and prey sampling reveal contaminant sources to Pacific Northwest ospreys. Ecol Appl 17:1223–1233CrossRefGoogle Scholar
  26. Espín S, García-Fernández AJ, Herzke D, Shore RF, van Hattum B, Martínez-López E, Coeurdassier M, Eulaers I, Fritsch C, Gómez-Ramírez P, Jaspers VL, Krone O, Duke G, Helander B, Mateo R, Movalli P, Sonne C, van den Brink N (2016) Tracking pan-continental trends in environmental contamination using sentinel raptors—what types of samples should we use? Ecotoxicology 25:777–801CrossRefGoogle Scholar
  27. Ewins PJ (1997) Osprey (Pandion haliaetus) populations in forested areas of North America: changes, their causes and management recommendations. J Raptor Res 31:138–150Google Scholar
  28. Fernie KJ, Letcher RJ (2010) Historical contaminants, flame retardants, and halogenated phenolic compounds in peregrine falcon (Falco peregrinus) nestling in the Canadian great lakes basin. Environ Sci Technol 44:3520–3526CrossRefGoogle Scholar
  29. Francour P, Thibault JC (1996) The diet of breeding osprey Pandion haliaetus on Corsica: exploitation of a coastal marine environment. Bird Study 43:129–133CrossRefGoogle Scholar
  30. Furness RW (1993) Birds as monitors of pollutants. In Birds as monitors of environmental change (eds Furness, R.W. & Greenwood, J.J.D.). London, Chapman & Hall, pp. 86–143Google Scholar
  31. Garcıa-Fernandez AJ, Calvo JF, Martınez-Lopez E, Marıa-Mojica P, Martınez JE (2008) Raptor ecotoxicology in Spain: a review on persistent environmental contaminants. Ambio 37:432–439CrossRefGoogle Scholar
  32. Gómez-Ramírez P, Shore RF, van den Brink NW, van Hattum B, Bustnes JO, Duke G, Fritsch C, García-Fernández AJ, Helander BO, Jaspers V, Krone O, MartínezLópez E, Mateo R, Movalli P, Sonne C (2014) An overview of existing raptor contaminant monitoring activities in Europe. Environ Int 67:12–21CrossRefGoogle Scholar
  33. Goyer RA (1996) Toxic effects of metals. In Casarett and Doull’s toxicology: the basic science of poisons, fifth edition (C. D. Klaassen, M. O. Amdur, and J. Doull, Editors). McGrawHill, New York, pp. 691–736Google Scholar
  34. Grove RA, Henny CJ, Kaiser JL (2009) Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs and estuaries. J Toxicol Environ Health B 12:25–44CrossRefGoogle Scholar
  35. Guigueno M, Elliott K, Levac J, Wayland M, Elliott J (2012) Differential exposure of alpine ospreys to mercury: melting glaciers, hydrology or deposition patterns? Environ Int 40:24–56CrossRefGoogle Scholar
  36. Gworek B, Bemowska-Kalabun O, Kijenska M, Wrzosek-Jakubowska J (2016) Mercury in marine and oceanic waters: a review. Water Air Soil Pollut 227:371CrossRefGoogle Scholar
  37. Häkkinen I, Häsänen E (1980) Mercury in eggs and nestlings of the osprey (Pandion haliaetus) in Finland and its bioaccumulation from fish. Ann Zool Fenn 17:131–139Google Scholar
  38. Hashmi MZ, Malik RN, Shahbaz M (2013) Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan. Ecotoxicol Environ Saf 89:158–165CrossRefGoogle Scholar
  39. Heimbürger LE et al (2010) Methyl mercury distributions in relation to presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochim Cosmochim Acta 74:5549–5559CrossRefGoogle Scholar
  40. Heinz GH, Hoffman DJ, Gold LG (1989) Impaired reproduction of mallards fed an organic form of selenium. J Wildl Manag 53:418–428CrossRefGoogle Scholar
  41. Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA (2009) Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 56:129–138CrossRefGoogle Scholar
  42. Henny CJ, Elliott JE (2007) Toxicology. In Raptor research and management techniques, eds. D.M. Bird and K.L. Bildstein pp. 329–350. Raptor Research Foundation.Surrey, British Columbia, Canada: Hancock HouseGoogle Scholar
  43. Henny CJ, Martell MS (2017) Satellite-tagged osprey nearly sets longevity record and productivity response to initial captures. J Raptor Res 51(2):180–183CrossRefGoogle Scholar
  44. Henny CJ, Blus LJ, Hoffman DJ, Grove RA, Hatfield JS (1991) Lead accumulation and osprey production near a mining site on the Coeur d’ Alene River. Idaho Arch Environ Contam Toxicol 21:415–424CrossRefGoogle Scholar
  45. Henny CJ, Galushin VM, Kuznetsov AV (1998) Organochlorine pesticides, PCBs, and mercury in osprey Pandion haliaetus eggs from the Upper Volga River, Russia. In: Chancellor RD, Meyberg B-U, Ferrero JJ (eds) Holarctic birds of prey. Proceeding of an International Conference, Badajoz, pp 525–534Google Scholar
  46. Henny CJ, Grove RA, Kaiser JL, Bentley VR (2004) An evaluation of osprey eggs to determine spatial residue patterns and effect along the Lower Columbia River, U.S.A. In: Chancellor RD, Meyberg B-U (eds) Raptors worldwide. World working group on birds of prey and owls, Budapest, pp 369–388Google Scholar
  47. Henny CJ, Grove RA, Kaiser JL (2008) Osprey distribution, abundance, reproductive success and contaminant burdens along lower Columbia River, 1997/1998 versus 2004. Arch Environ Contam Toxicol 5:525–534CrossRefGoogle Scholar
  48. Henny CJ, Grove RA, Kaiser JL, Johnson BL (2010) North American osprey populations and contaminants: historic and contemporary perspectives. J Toxicol Environ Health B 13(7–8):579–603CrossRefGoogle Scholar
  49. Hughes KD, Ewins PJ, Clark KE (1997) A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes. Arch Environ Contam Toxicol 33:441–452CrossRefGoogle Scholar
  50. Jackson A, Evers DC, Eagles-Smith CA, Ackerman JT, Willacker JJ, Elliott JE, Lepak JM, Vander Pol SS, Bryan CE (2016) Mercury risk to avian piscivores across western United States and Canada. Sci Total Environ 568:685–696CrossRefGoogle Scholar
  51. Jiménez B, Merino R, Abad E, Rivera J, Olie K (2007) Organochlorine compounds (PCDDs, PCDFs, PCBs and DDTs) in two raptor species inhabiting a Mediterranean Island in Spain. Environ Sci Pollut Res 14:61–68CrossRefGoogle Scholar
  52. Johnson B, Henny C, Kaiser J, Davis J, Schulz E (2009) Assessment of contaminant exposure and effects on ospreys nesting along the Lower Duwamish River, Washington, 2006–07. U. S Geological Survey Open-File Report 2009–1255, pp. 88Google Scholar
  53. Katzner TE, Stuber MJ, Slabe VA, Anderson JT, Cooper JL, Rhea LL, Millsap BA (2017) Origins of lead in populations of raptors. Anim Conserv. CrossRefGoogle Scholar
  54. Kitowski I, Jakubas D, Wiącek D, Sujak A (2017a) Concentrations of lead and other elements in the liver of the white-tailed eagle (Haliaeetus albicilla), a European flagship species, wintering in Eastern Poland. Ambio. 46:825–841. CrossRefGoogle Scholar
  55. Kitowski I, Jakubas D, Wiącek D, Sujak A, Pitucha G (2017b) Trace element concentrations in livers of common buzzards Buteo buteo from eastern Poland. Environ Monit Assess 189:421.
  56. Lazarus RS, Rattner BA, McGowan PC, Hale RC, Schultz SL, Karouna-Renier NK, Ottinger MA (2015) Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern. Environ Pollut 205:278–290CrossRefGoogle Scholar
  57. Lemarchand C, Rosoux R, Berny P (2009) Etude toxicologique du basin de la Loire à l’aide de bioindicateurs, dans le contexte des effets prévisibles du réchauffement climatique. Plate-Forme Recherche/Données/Informations, Plan Loire Grandeur Nature 2007-2013,
  58. Lemarchand C, Rosoux R, Berny P (2011) Semi aquatic top-predators as sentinels of diversity and dynamics of pesticides in aquatic food webs. The case of European otter (Lutra lutra) and osprey (Pandion haliaetus) in Loire River catchment, France. In: Stoytcheva, M. (ed.), Pesticides in the modern world: risks and benefits. InTech, ISBN 978-953-307-458-0Google Scholar
  59. Leonzio C, Massi A (1989) Metal biomonitoring in birds eggs: a critical experiment. Bull Environ Contain Toxicol 43:402–406CrossRefGoogle Scholar
  60. Leonzio C, Fossi C, Focardi S (1986) Heavy metals and selenium variations in a migratory bird wintering in a mercury polluted area. Bull Environ Contam Toxicol 37:219–225CrossRefGoogle Scholar
  61. Maurer G, Portugal SJ, Cassey P (2012) A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis 154:714–724CrossRefGoogle Scholar
  62. Monti F, Dominici JM, Choquet R, Duriez O, Sammuri G, Sforzi A (2014) The osprey reintroduction in Central Italy: dispersal, survival and first breeding data. Bird Study 61:465–473CrossRefGoogle Scholar
  63. Monti F, Duriez O, Dominici JM, Sforzi A, Robert A, Fusani L, Grémillet D (2018a) The price of success: integrative long-term study reveals ecotourism impacts on a flagship species at a UNESCO site. Anim Conserv. CrossRefGoogle Scholar
  64. Monti F, Grémillet D, Sforzi A, Sammuri G, Dominici JM, Triay R, Munoz A, Fusani L, Duriez O (2018b) Migration and wintering strategies in vulnerable Mediterranean osprey populations. Ibis. CrossRefGoogle Scholar
  65. Monti F, Grémillet D, Sforzi A, Dominici JM, Triay Bagur R, Muñoz Navarro A, Fusani L, Klaassen RHG, Alerstam T, Duriez O (2018c) Migration distance affects stopover use but not travel speed: contrasting patterns between long- and short-distance migrating ospreys. J Avian Biol. CrossRefGoogle Scholar
  66. Muriel R, Ferrer M, Casado E, Calabuig CP (2010) First successful breeding of reintroduced ospreys Pandion haliaetus in mainland Spain. Ardeola 57:175–180Google Scholar
  67. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  68. Odsjö T, Sondell J (2014) Eggshell thinning of osprey (Pandion haliaetus) breeding in Sweden and its significance for egg breakage and breeding outcome. Sci Total Environ 470:1023–1029CrossRefGoogle Scholar
  69. Odsjö T, Roos A, Johnels AG (2004) The tail feathers of osprey nestlings (Pandion haliaetus L.) as indicators of change in mercury load in the environment of southern Sweden (1969–1998): a case study with a note on the simultaneous intake of selenium. Ambio 33:133–137CrossRefGoogle Scholar
  70. Pereira MG, Lawlor A, Bertolero A, Díez S, Shore RF, Lacorte S (2019) Temporal and spatial distribution of mercury in gulls eggs from the Iberian Peninsula. Arch Environ Contam Toxicol 76:394–404. CrossRefGoogle Scholar
  71. Peterson SH, Ackerman JT, Eagles-Smith CA, Hartman CA, Herzog MP (2017) A critical evaluation of the utility of eggshells for estimating mercury concentrations in avian eggs. Environ Toxicol Chem. CrossRefGoogle Scholar
  72. Poole AF (1989) Ospreys: a natural and unnatural history. Cambridge University Press, Cambridge, p 246Google Scholar
  73. Rattner BA, McGowan PC, Golden NH, Hatfield JS, Toschik PC, Lukei RF et al (2004) Contaminant exposure and reproductive success of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern. Arch Environ Contam Toxicol 47:126–140CrossRefGoogle Scholar
  74. Rattner BA, Golden NH, Toschik PC, McGowan PC, Custer TW (2008) Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays. Arch Environ Contam Toxicol 54:114–122CrossRefGoogle Scholar
  75. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  76. Scheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17(2):93–101CrossRefGoogle Scholar
  77. Sforzi A, Sammuri G, Monti F (2019) From a regional reintroduction project to a country-wide conservation approach: scaling up results to promote osprey conservation in Italy. Avocetta - J Ornithol 43(1):81–85Google Scholar
  78. Siverio M, Siverio F, Rodríguez B, Del Moral JC (Eds.) (2018) El águila pescadora en España y Portugal: población invernante 2016–2017, reproductora en 2018 y método de censo. SEO/BirdLife. MadridGoogle Scholar
  79. Stebbins KR, Klimstra JD, Eagles-Smith CA, Ackerman JT, Heinz GHA (2009) Non-lethal micro-sampling technique to monitor the effects of mercury on wild bird eggs. Environ Toxicol Chem 28:465–470CrossRefGoogle Scholar
  80. Steidl RJ, Griffin CR, Niles LJ (1991) Contaminant levels of osprey eggs and prey reflect regional differences in reproductive success. J Wildl Manag 55:601–608CrossRefGoogle Scholar
  81. Stickel LF, Wiemeyer SN, Blus LJ (1973) Pesticide residues in eggs of wild birds: adjustment for loss of moisture and lipid. Bull Environ Contam Toxicol 9:193–196CrossRefGoogle Scholar
  82. Thompson DR (1996) Mercury in birds and terrestrial mammals. In: Beyer W, Heinz G, Redmon-Norwood A (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Publishers, CRC Press, Boca Raton, pp 341–356Google Scholar
  83. Toschik PC, Rattner BA, McGowan PC, Christman MC, Carter DB, Hale RC, Matson CW, Ottinger MA (2005) Effects of contaminant exposure on reproductive success of ospreys (Pandion haliaetus) nesting in Delaware River and Bay, USA. Environ Toxicol Chem 24:617–628CrossRefGoogle Scholar
  84. Waltham NJ, Teasdale PR, Connolly RM (2013) Use of flathead mullet (Mugil cephalus) in coastal biomonitor studies: review and recommendations for future studies. Mar Pollut Bull 69(1e2):195e205Google Scholar
  85. Wiemeyer SN, Spitzer PR, Krantz WC, Lamont TG, Cromartie E (1975) Effects of environmental pollutants on Connecticut and Maryland ospreys. J Wildl Manag 39:124–139CrossRefGoogle Scholar
  86. Wiemeyer SN, Bunck CM, Krynitsky AM (1988) Organochlorine pesticides, polychlorihated biphenyls, and mercury in osprey eggs (1970-79) and their relationships to shell thinning and productivity. Arch Environ Contain Toxicol 17:767–787CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
  2. 2.Maremma Natural History MuseumGrossetoItaly

Personalised recommendations