Advertisement

Amino-Fe3O4-functionalized multi-layered graphene oxide as an ecofriendly and highly effective nanoscavenger of the reactive drimaren red

  • Tiago José Marques FragaEmail author
  • Luiz Filipe Félix da Silva
  • Letticia Emely Maria de Lima Ferreira
  • Maryne Patrícia da Silva
  • Daysianne Mikaella dos Santos Marques Fraga
  • Caroline Maria Bezerra de Araújo
  • Marilda Nascimento Carvalho
  • Jorge Vinicius Fernandes de Lima Cavalcanti
  • Marcos Gomes Ghislandi
  • Maurício Alves da Motta Sobrinho
Research Article
  • 13 Downloads

Abstract

Amino-functionalized multilayer graphene oxide (Am-nGO) has been synthesized and applied to remove the reactive drimaren red (DR) from aqueous solutions. Infrared spectroscopy evidenced amine and amide presence by peaks at 1579 cm−1 and a band between 3300 and 3500 cm−1. Raman spectroscopy showed an increment in ID/IG ratio after amino-Fe3O4-functionalization of nGO from 1.05 to 1.20, referent to an increase in sp3 domain disorder. The isoelectric point of Am-nGO was pH 8.1. From kinetic study, the equilibrium was achieved within 90 min; moreover, pseudo-n-order model satisfactorily fitted to the experimental data. Kinetic constant (kn) was 0.71 mg1−n g1−n min−1 and modeled equilibrium sorption capacity (qe) 219.17 mg g−1. Equilibrium experiments showed monolayer adsorption capacity (qm) of 219.75 mg g−1, and BET model best fitted to the equilibrium data, indicating that the adsorption process happened with multiple layers formation. From sorption thermodynamics, the standard free energy of Gibbs and enthalpy were respectively − 31.91 kJ mol−1 (at 298 K) and 66.43 kJ mol−1. Such data evidence the spontaneous and chemical behavior of DR adsorption as a consequence of strong electron donor-receptor interactions between the dye and the nanosorbent. By phytotoxicity assessment, Am-nGO showed inexpressive inhibitory potential to American lettuce seeds in comparison with its precursor nGO and graphite nanoplatelets.

Keywords

Multilayer graphene oxide Functionalization Adsorption Drimaren red Phytotoxicity Textile wastewater 

Abbreviations

GO

Graphene oxide

r-GO

Reduced graphene oxide

nGO

Multilayer graphene oxide

Am-nGO

Amino-Fe3O4-functionalized multilayer graphene oxide

nGO-(NH)R

Amino functionalized multilayer graphene oxide

GNP

Graphite nanoplatelets

DETA

Diethylenetriamine

DR

Drimaren red

PFO

Pseudo-first-order

PSO

Pseudo-second-order

PNO

Pseudo-n-order

IPD

Intraparticle diffusion

BET

Brunauer, Emmet, and Teller isotherm

NZVI-AC

Nano zero valent iron stacked activated carbon

Notes

Acknowledgments

The authors acknowledge the technical support provided by the Centro de Tecnologias Estratégicas do Nordeste (CETENE), the Laboratório de Análises de Minerais, Solos e Águas (LAMSA)/UFPE, the Instituto de Tecnologia de Pernambuco (ITEP), and the Centro de Pesquisas Avançadas em Grafeno, Nanomateriais e Nanotecnologias (MackGraphe)/Instituto Presbiteriano Mackenzie, São Paulo/SP.

Funding information

This work was supported by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) [grant numbers IBPG-1917-3.06/16 and APQ-1086-3.06/15] and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant number 311133/2015-0].

References

  1. Araujo CMB, do Nascimento GFO, da Costa GRB, da Silva KS, Baptisttella AMS, Ghislandi MG, da Motta Sobrinho MA (2018) Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of Hummers method. Chem Eng Commun 206:1386–1398.  https://doi.org/10.1080/00986445.2018.1534232 CrossRefGoogle Scholar
  2. Ata S, Shaheen I, Qurat-ul-Ayne GS, Sultan M, Majid F, Bibi I, Iqbal M (2018) Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation. Diam Relat Mater 90:26–31.  https://doi.org/10.1016/j.diamond.2018.09.015 CrossRefGoogle Scholar
  3. Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289.  https://doi.org/10.1007/s11368-010-0285-4 CrossRefGoogle Scholar
  4. Brito MJP, Veloso CM, Santos LS, Bonomo RCF, Fontan RCI (2018) Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technol 339:334–343.  https://doi.org/10.1016/j.powtec.2018.08.017 CrossRefGoogle Scholar
  5. Bueno RA, Martínez JI, Luccas RF, Del Árbol NR, Munuera C, Palacio I, Palomares FJ, Lauwaet K, Thakur S, Baranowski JM, Strupinski W, López MF, Mompean F, García-Hernández M, Martín-Gago JA (2017) Highly selective covalent organic functionalization of epitaxial graphene. Nat Commun 8:1–10.  https://doi.org/10.1038/ncomms15306 CrossRefGoogle Scholar
  6. Caliman CC, Mesquita AF, Cipriano DF, Freitas JCC, Cotta AAC, Macedo WAA, Porto AO (2018) One-pot synthesis of amine-functionalized graphene oxide by microwave-assisted reactions: an outstanding alternative for supporting materials in supercapacitors. RSC Adv 8:6136–6145.  https://doi.org/10.1039/c7ra13514a CrossRefGoogle Scholar
  7. Das TR, Patra S, Madhuri R, Sharma PK (2018) Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J Colloid Interface Sci 509:82–93.  https://doi.org/10.1016/j.jcis.2017.08.102 CrossRefGoogle Scholar
  8. Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15:65–73.  https://doi.org/10.1007/s10450-009-9151-3 CrossRefGoogle Scholar
  9. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4.  https://doi.org/10.1103/PhysRevLett.97.187401 CrossRefGoogle Scholar
  10. Fraga TJM, de Souza ZSB, Marques Fraga DMS, Carvalho MN, Luna Freire EMP, Ghislandi MG, da Motta Sobrinho MA (2019) Comparative approach towards the adsorption of Reactive Black 5 and methylene blue by n-layer graphene oxide and its amino-functionalized derivative. Adsorption.:1–19.  https://doi.org/10.1007/s10450-019-00156-9
  11. Ghislandi MG, Tkalya E, Alekseev A, Koning C, De With G (2015) Electrical conductive behavior of polymer composites prepared with aqueousgraphene dispersions. Appl Mater Today 1:88–94.  https://doi.org/10.1016/j.apmt.2015.11.001 CrossRefGoogle Scholar
  12. Gholampour A, Valizadeh MK, Tran DNH, Ozbakkaloglu T, Losic D (2017) From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene–cement composites. ACS Appl Mater Interfaces 9:43275–43286.  https://doi.org/10.1021/acsami.7b16736 CrossRefGoogle Scholar
  13. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I Theoretical. J Colloid Interface Sci 47:755–765.  https://doi.org/10.1016/0021-9797(74)90252-5 CrossRefGoogle Scholar
  14. Guo L, Ye P, Wang J, Fu F, Wu Z (2015) Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J Hazard Mater 298:28–35.  https://doi.org/10.1016/j.jhazmat.2015.05.011 CrossRefGoogle Scholar
  15. Guo Z, Xie C, Zhang P, Zhang J, Wang G, He X, Ma Y, Zhao B, Zhang Z (2017) Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci Total Environ 580:1300–1308.  https://doi.org/10.1016/j.scitotenv.2016.12.093 CrossRefGoogle Scholar
  16. He S, Liu X, Yan P, Wang A, Su J, Su X (2019) Preparation of gemini surfactant/graphene oxide composites and their superior performance for Congo red adsorption. RSC Adv 9:4908–4916.  https://doi.org/10.1039/c8ra10025j CrossRefGoogle Scholar
  17. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323.  https://doi.org/10.1021/nn101097v CrossRefGoogle Scholar
  18. Hu J, Deng W, Chen D (2017) Ceria hollow spheres as an adsorbent for efficient removal of acid dye. ACS Sustain Chem Eng 5:3570–3582.  https://doi.org/10.1021/acssuschemeng.7b00396 CrossRefGoogle Scholar
  19. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  20. Iqbal M, Nisar J (2015) Cytotoxicity and mutagenicity evaluation of gamma radiation and hydrogen peroxide treated textile effluents using bioassays. J Environ Chem Eng 3:1912–1917.  https://doi.org/10.1016/j.jece.2015.06.011 CrossRefGoogle Scholar
  21. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZH, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407.  https://doi.org/10.1016/j.molliq.2018.02.034 CrossRefGoogle Scholar
  22. Kyzas GZ, Deliyanni EA, Bikiaris DN, Mitropoulos AC (2018) Graphene composites as dye adsorbents: review. Chem Eng Res Des 129:75–88.  https://doi.org/10.1016/j.cherd.2017.11.006 CrossRefGoogle Scholar
  23. Lazarević-Pašti T, Anićijević V, Baljozović M, Anićijević DV, Gutić S, Vasić V, Skorodumova NV, Pašti IA (2018) The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ Sci Nano 5:1482–1494.  https://doi.org/10.1039/c8en00171e CrossRefGoogle Scholar
  24. Lewis DM, Wang JC (1998) The use of fourier transform infrared (FT-IR) spectroscopy to study the state of heterobifunctional reactive dyes. Dyes Pigments 39:111–123.  https://doi.org/10.1016/S0143-7208(97)00106-X CrossRefGoogle Scholar
  25. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434.  https://doi.org/10.1016/j.molliq.2018.10.048 CrossRefGoogle Scholar
  26. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013, 2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng.  https://doi.org/10.1155/2013/923403 CrossRefGoogle Scholar
  27. Lv X, Xue X, Jiang G, Wu D, Sheng T, Zhou H, Xu X (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59.  https://doi.org/10.1016/j.jcis.2013.11.044 CrossRefGoogle Scholar
  28. Macha M, Marion S, Nandigana VVR, Radenovic A (2019) 2D materials as an emerging platform for nanopore-based power generation. Nat Rev Mater 4:588–605.  https://doi.org/10.1038/s41578-019-0126-z CrossRefGoogle Scholar
  29. Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, Noor ZZ (2015) Biodecolorization of recalcitrant dye as the sole source of nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environ Sci Pollut Res 22:11669–11678.  https://doi.org/10.1007/s11356-015-4436-4 CrossRefGoogle Scholar
  30. Oliveira EHC, Marques Fraga DMS, da Silva MP, Fraga TJM, Carvalho MN, Luna Freire EMP, Ghislandi MG, da Motta Sobrinho MA (2019) Removal of toxic dyes from aqueous solution by adsorption onto highly recyclable xGnP® graphite nanoplatelets. J Environ Chem Eng 7:103001.  https://doi.org/10.1016/j.jece.2019.103001 CrossRefGoogle Scholar
  31. Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896.  https://doi.org/10.1039/c5cs00021a CrossRefGoogle Scholar
  32. Rajumon R, Anand JC, Ealias AM, Desai DS, George G, Saravanakumar MP (2019) Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: an in-depth investigation on sonochemical factors. J Environ Chem Eng 7:103479.  https://doi.org/10.1016/j.jece.2019.103479 CrossRefGoogle Scholar
  33. Senthil Kumar P, Varjani SJ, Suganya S (2018) Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: kinetic and isotherm modelling. Bioresour Technol 250:716–722.  https://doi.org/10.1016/j.biortech.2017.11.097 CrossRefGoogle Scholar
  34. Soleimani K, Tehrani ADD, Adeli M (2018) Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotoxicol Environ Saf 147:34–42.  https://doi.org/10.1016/j.ecoenv.2017.08.021 CrossRefGoogle Scholar
  35. Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685.  https://doi.org/10.1126/science.266.5191.1683 CrossRefGoogle Scholar
  36. Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116.  https://doi.org/10.1016/j.carbon.2011.06.095 CrossRefGoogle Scholar
  37. Tseng RL, Wu PH, Wu FC, Juang RS (2014) A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-nth-order equation. Chem Eng J 237:153–161.  https://doi.org/10.1016/j.cej.2013.10.013 CrossRefGoogle Scholar
  38. Valizadeh S, Rasoulifard MH, Seyed Dorraji MS (2014) Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneouscatalysts in three UV, Vis and Fenton like degradation system. Appl Surf Sci 319:358–366.  https://doi.org/10.1016/j.apsusc.2014.07.139 CrossRefGoogle Scholar
  39. Wang S, Li X, Liu Y, Zhang C, Tan X, Zeng G, Song B, Jiang L (2018) Nitrogen-containing amino compounds functionalized graphene oxide: synthesis, characterization and application for the removal of pollutants from wastewater: a review. J Hazard Mater 342:177–191.  https://doi.org/10.1016/j.jhazmat.2017.06.071 CrossRefGoogle Scholar
  40. Yan M, Huang W, Li Z (2019) Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int J Biol Macromol 136:927–935.  https://doi.org/10.1016/j.ijbiomac.2019.06.144 CrossRefGoogle Scholar
  41. Yang K, Li Y, Tan X, Peng R, Liu Z (2013) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–1503.  https://doi.org/10.1002/smll.201201417 CrossRefGoogle Scholar
  42. Yu H, Wang T, Dai W, Yu L, Ma N (2018) Competitive adsorption of dye species onto biomass nanoporous carbon in single and bicomponent systems. Braz J Chem Eng 35:253–264.  https://doi.org/10.1590/0104-6632.20180351s20160578 CrossRefGoogle Scholar
  43. Zhang F, Song Y, Song S, Zhang R, Hou W (2015) Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces 7:7251–7263.  https://doi.org/10.1021/acsami.5b00433 CrossRefGoogle Scholar
  44. Zhou L, Zhou H, Hu Y, Yan S, Yang J (2019) Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. J Environ Manag 234:245–252.  https://doi.org/10.1016/j.jenvman.2019.01.009 CrossRefGoogle Scholar
  45. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924.  https://doi.org/10.1002/adma.201001068 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Tiago José Marques Fraga
    • 1
    Email author
  • Luiz Filipe Félix da Silva
    • 1
  • Letticia Emely Maria de Lima Ferreira
    • 1
    • 2
  • Maryne Patrícia da Silva
    • 1
  • Daysianne Mikaella dos Santos Marques Fraga
    • 1
  • Caroline Maria Bezerra de Araújo
    • 1
  • Marilda Nascimento Carvalho
    • 1
  • Jorge Vinicius Fernandes de Lima Cavalcanti
    • 1
  • Marcos Gomes Ghislandi
    • 1
    • 3
  • Maurício Alves da Motta Sobrinho
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  2. 2.Centro de BiociênciasUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  3. 3.Campus das Engenharias–UACSAUniversidade Federal Rural de Pernambuco (UFRPE)Cabo de Santo AgostinhoBrazil

Personalised recommendations