Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetite-based catalysts for wastewater treatment

  • 85 Accesses

Abstract

The increasing number and concentration of organic pollutants in water stream could become a serious threat in the near future. Magnetite has the potential to degrade pollutants via photocatalysis with a convenient separation process. This study discusses in detail the control size and morphology of magnetite nanoparticles, and their composites with co-precipitation, hydrothermal, sol-gel, and electrochemical route. Further photocatalytic enhancement with the addition of metal and porous support was proposed. This paper also discussed the technology to extend the lifetime of recombination through an in-depth explanation of charge transfer. The possibility to use waste materials as catalyst support was also elucidated. However, magnetite-based photocatalysts still require many improvements to meet commercialization criteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelrahman EA (2018) Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J Mol Liq 253:72–82. https://doi.org/10.1016/j.molliq.2018.01.038

  2. Adam F, Appaturi JN, Thankappan R, Nawi MAM (2010) Silica-tin nanotubes prepared from rice husk ash by sol-gel method: characterization and its photocatalytic activity. Appl Surf Sci 257:811–816. https://doi.org/10.1016/j.apsusc.2010.07.070

  3. Al-Ghamdi AA, Al-Hazmi F, Al-Tuwirqi RM, Alnowaiser F, Al-Hartomy OA, El-Tantawy F, Yakuphanoglu F (2013) Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles. Solid State Sci 19:111–116. https://doi.org/10.1016/j.solidstatesciences.2013.02.005

  4. Aphesteguy JC, Kurlyandskaya GV, de Celis JP, Safronov AP, Schegoleva NN (2015) Magnetite nanoparticles prepared by co-precipitation method in different conditions. Mater Chem Phys 161:243–249. https://doi.org/10.1016/j.matchemphys.2015.05.044

  5. Arevalo P, Isasi J, Caballero AC, Marco JF, Martin-Hernandez F (2017) Magnetic and structural studies of Fe3O4 nanoparticles synthesized via coprecipitation and dispersed in different surfactants. Ceram Int 43:10333–10340. https://doi.org/10.1016/j.ceramint.2017.05.064

  6. Arora V, Sood A, Shah J, Kotnala RK, Jain TK (2017) Synthesis and characterization of pectin-6-aminohexanoic acid-magnetite nanoparticles for drug delivery. Mater Sci Eng C 80:243–251. https://doi.org/10.1016/j.msec.2017.05.097

  7. Atla SB, Lin W-R, Chien T-C, Tseng M-J, Shu J-C, Chen C-C, Chen C-Y (2018) Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight. Mater Chem Phys 216:380–386. https://doi.org/10.1016/j.matchemphys.2018.06.020

  8. Attallah OA, Girgis E, Abdel-Mottaleb MMSA (2016) Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique. J Magn Magn Mater 399:58–63. https://doi.org/10.1016/j.jmmm.2015.09.059

  9. Baêta BEL, Lima DRS, Silva SQ, Aquino SF (2015) Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye. Chem Eng J 259:936–944. https://doi.org/10.1016/j.cej.2014.08.050

  10. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process 109:178–189. https://doi.org/10.1016/j.cep.2016.08.016

  11. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

  12. Chandrappa KG, Venkatesha TV (2014) Electrochemical bulk synthesis of Fe3O4 and α-Fe23 nanoparticles and its Zn-Co/α-Fe2O3 composite thin films for corrosion protection. Mater Corros 65:509–521. https://doi.org/10.1002/maco.201206630

  13. Chen F, Xie S, Huang X, Qiu X (2017) Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater 322:152–162. https://doi.org/10.1016/j.jhazmat.2016.02.073

  14. Chen H, Zhao L, Xiang Y, He Y, Song G, Wang X, Liang F (2016) A novel Zn–TiO2/C@SiO2 nanoporous material on rice husk for photocatalytic applications under visible light. Desalin Water Treat 57:9660–9670. https://doi.org/10.1080/19443994.2015.1035339

  15. Chen SJ, Chen G, Chen H, Sun Y, Yu XX, Su YJ, Tan SS (2019) Preparation of porous carbon-based material from corn straw via mixed alkali and its application for removal of dye. Colloid Surf A 568:173–183. https://doi.org/10.1016/j.colsurfa.2019.02.008

  16. Chi S, Ji C, Sun S, Jiang H, Qu R, Sun C (2016) Magnetically separated meso-g-C3N4/Fe3O4: Bifuctional composites for removal of arsenite by simultaneous visible-light catalysis and adsorption. Ind Eng Chem Res 55:12060–12067. https://doi.org/10.1021/acs.iecr.6b02178

  17. Cui E et al (2019) In-situ hydrothermal fabrication of Sr2FeTaO6/NaTaO3 heterojunction photocatalyst aimed at the effective promotion of electron-hole separation and visible-light absorption. Appl Catal B Environ 241:52–65. https://doi.org/10.1016/j.apcatb.2018.09.006

  18. Deotale AJ, Nandedkar RV (2016) Correlation between particle size, strain and band gap of Iron oxide nanoparticles. Mater Today: Proceedings 3:2069–2076. https://doi.org/10.1016/j.matpr.2016.04.110

  19. Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866. https://doi.org/10.1016/j.seppur.2018.09.003

  20. Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manag 85:833–846. https://doi.org/10.1016/j.jenvman.2007.07.031

  21. Ding D, Liu C, Ji Y, Yang Q, Chen L, Jiang C, Cai T (2017) Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem Eng J 308:330–339. https://doi.org/10.1016/j.cej.2016.09.077

  22. Do QC, Kim DG, Ko SO (2018) Catalytic activity enhancement of a Fe3O4@SiO2 yolk-shell structure for oxidative degradation of acetaminophen by decoration with copper. J Clean Prod 172:1243–1253. https://doi.org/10.1016/j.jclepro.2017.10.246

  23. Franger S, Berthet P, Berthon J (2004) Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J Solid State Electr 8:218–223. https://doi.org/10.1007/s10008-003-0469-6

  24. Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53:11571–11592. https://doi.org/10.1021/ie501210j

  25. Gan G, Zhao P, Zhang X, Liu J, Liu J, Zhang C, Hou X (2017) Degradation of pantoprazole in aqueous solution using magnetic nanoscaled Fe3O4/CeO2 composite: effect of system parameters and degradation pathway. J Alloys Compd 725:472–483. https://doi.org/10.1016/j.jallcom.2017.07.063

  26. García-Villén F, Flores-Ruíz E, Verdugo-Escamilla C, Huertas FJ (2018) Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material. Appl Clay Sci 160:238–248. https://doi.org/10.1016/j.clay.2018.02.004

  27. Garside M (2019) Worldwide production of chemical and textile fibers from 1975 to 2018 (in 1,000 metric tons). Statista. https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/

  28. Gong P, Li B, Kong X, Shakeel M, Liu J, Zuo S (2018) Hybriding hierarchical zeolite with Pt nanoparticles and graphene: ternary nanocomposites for efficient visible-light photocatalytic degradation of methylene blue. Microporous Mesoporous Mater 260:180–189. https://doi.org/10.1016/j.micromeso.2017.10.029

  29. Gopi D, Thameem Ansari M, Kavitha L (2016) Electrochemical synthesis and characterization of cubic magnetite nanoparticle in aqueous ferrous perchlorate medium. Arab J Chem 9:S829–S834. https://doi.org/10.1016/j.arabjc.2011.08.005

  30. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manag 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

  31. Hammiche-bellal Y, Benadda-kordjani A, Benrabaa R, Djadoun A, meddour-boukhobza L (2018) Efficiency of magnetite as nanocrystalline bulk catalyst for the reduction of 4-nitrophenol. J Environ Chem Eng 6:2355–2362 doi:https://doi.org/10.1016/j.jece.2018.03.042

  32. Han C, Huang G, Zhu D, Hu K (2017) Facile synthesis of MoS2/Fe3O4 nanocomposite with excellent photo-Fenton-like catalytic performance. Mater Chem Phys 200:16–22. https://doi.org/10.1016/j.matchemphys.2017.07.065

  33. Hassani A, Karaca C, Karaca S, Khataee A, Açışlı Ö, Yılmaz B (2018) Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles. Ultrason Sonochem 42:390–402. https://doi.org/10.1016/j.ultsonch.2017.11.036

  34. He Y, Dai C, Zhou X (2017) Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine. Environ Sci Pollut R 24:2065–2074. https://doi.org/10.1007/s11356-016-7978-1

  35. Hu P et al (2019) Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method. J Alloys Compd 773:605–611. https://doi.org/10.1016/j.jallcom.2018.09.238

  36. Hussain Z, Kumar R (2018) Synthesis and characterization of novel corncob-based solid acid catalyst for biodiesel production. Ind Eng Chem Res 57:11645–11657. https://doi.org/10.1021/acs.iecr.8b02464

  37. Ike IA, Duke M (2018) Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation. J ContamHydrol 215:73–85. https://doi.org/10.1016/j.jconhyd.2018.07.004

  38. Jack RS, Ayoko GA, Adebajo MO, Frost RL (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut R 22:7439–7449. https://doi.org/10.1007/s11356-015-4346-5

  39. Jordan R (2009) Textile mills effluent guidelines. United States Environmental Protection Agency. https://www.epa.gov/eg/textile-mills-effluent-guidelines

  40. Jorgetto AO et al (2018) Magnetically-extractable hybrid of magnetite, mesoporous silica and titania for the photo-degradation of organic compounds in water. Appl Surf Sci 457:121–133. https://doi.org/10.1016/j.apsusc.2018.06.218

  41. Jusoh NWC, Jalil AA, Triwahyono S, Mamat CR (2015) Tailoring the metal introduction sequence onto mesostructured silica nanoparticles framework: effect on physicochemical properties and photoactivity. Appl Catal A Gen 492:169–176. https://doi.org/10.1016/j.apcata.2014.12.046

  42. Karbasi M, Karimzadeh F, Kiwi J, Raeissi K, Pulgarin C, Rtimi S (2019) Flower-like magnetized photocatalysts accelerating an emerging pollutant removal under indoor visible light and related phenomena. J Photochem Photobiol A Chem 378:105–113. https://doi.org/10.1016/j.jphotochem.2019.04.017

  43. Khalil MI (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 8:279–284. https://doi.org/10.1016/j.arabjc.2015.02.008

  44. Krishnamurthy M, Msm K, Kanakkampalayam Krishnan C (2016) Hierarchically structured MFI zeolite monolith prepared using agricultural waste as solid template. Microporous Mesoporous Mater 221:23–31. https://doi.org/10.1016/j.micromeso.2015.09.022

  45. Lai M, Riley DJ (2008) Templated electrosynthesis of nanomaterials and porous structures. J Colloid Interface Sci 323:203–212. https://doi.org/10.1016/j.jcis.2008.04.054

  46. Landrigan PJ, Fuller R, Fisher S, Suk WA, Sly P, Chiles TC, Bose-O'Reilly S (2019) Pollution and children’s health. Sci Total Environ 650:2389–2394. https://doi.org/10.1016/j.scitotenv.2018.09.375

  47. Leclerc A, Sala S, Secchi M, Laurent A (2019) Building national emission inventories of toxic pollutants in Europe. Environ Int 130:104785. https://doi.org/10.1016/j.envint.2019.03.077

  48. Li S, Qin GW, Pei TWL, Ren YP, Zhang YD, Esling C, Zuo L (2009) Capping groups induced size and shape evolution of magnetite particles under hydrothermal condition and their magnetic properties. J Am Ceram Soc 92:631–635. https://doi.org/10.1111/j.1551-2916.2009.02928.x

  49. Li W, Mu B, Yang Y (2019) Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol 277:157–170. https://doi.org/10.1016/j.biortech.2019.01.002

  50. Li ZP, Wen YQ, Shang JP, Wu MX, Wang LF, Guo Y (2014) Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity. Chin Chem Lett 25:287–291. https://doi.org/10.1016/j.cclet.2013.10.023

  51. Liu X et al (2017) Biomass activated carbon supported with high crystallinity and dispersion Fe3O4 nanoparticle for preconcentration and effective degradation of methylene blue. J Taiwan Inst Chem Eng 81:265–274. https://doi.org/10.1016/j.jtice.2017.10.002

  52. Lucas-Granados B, Sánchez-Tovar R, Fernández-Domene RM, García-Antón J (2018) Influence of electrolyte temperature on the synthesis of iron oxide nanostructures by electrochemical anodization for water splitting. Int J Hydrog Energy 43:7923–7937. https://doi.org/10.1016/j.ijhydene.2018.03.046

  53. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473-474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

  54. Masudi A, Jusoh NWC, Bakri Z, Jalil AA, Ali RR, Jaafar NF (2019) Durian shell husk extract assisted synthesis of copper oxides nanoparticles for the photodegradation of paracetamol. Malaysian J Anal Sci 23:818–827

  55. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater-a review. J Water Process Eng 7:244–265. https://doi.org/10.1016/j.jwpe.2015.07.001

  56. Michael I, Rizzo L, McArdell C, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995. https://doi.org/10.1016/j.watres.2012.11.027

  57. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019

  58. Mishra P, Patnaik S, Parida K (2019) An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal Sci Technol 9:916–941. https://doi.org/10.1039/c8cy02462f

  59. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - a review. Appl Cata B: Environ 176-177:249–265. https://doi.org/10.1016/j.apcatb.2015.04.003

  60. Murcia Mesa JJ, Arias Bolivar LG, Sarmiento HAR, Martínez EGÁ, Páez CJ, Lara MA, Santos JAN, Carmen Hidalgo López M (2019) Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts. Environ Sci Pollut R 26:4171–4179. https://doi.org/10.1007/s11356-018-1592-3

  61. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review Ore Geol Rev 61:1–32 doi:https://doi.org/10.1016/j.oregeorev.2013.12.013

  62. Nikitin A et al (2017) Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles. J Mag Mag Mater 441:6–13. https://doi.org/10.1016/j.jmmm.2017.05.039

  63. Noorisepehr M, Ghadirinejad K, Kakavandi B, Ramazanpour Esfahani A, Asadi A (2019) Photo-assisted catalytic degradation of acetaminophen using peroxymonosulfate decomposed by magnetic carbon heterojunction catalyst. Chemosphere 232:140–151. https://doi.org/10.1016/j.chemosphere.2019.05.070

  64. Ortega-Liebana MC, Hueso JL, Ferdousi S, Arenal R, Irusta S, Yeung KL, Santamaria J (2017) Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light. Appl Catal B: Environ218:68–79 doi:https://doi.org/10.1016/j.apcatb.2017.06.021

  65. Ozbey Unal B, Bilici Z, Ugur N, Isik Z, Harputlu E, Dizge N, Ocakoglu K (2019) Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate. J Water Process Eng 32:100897–100897. https://doi.org/10.1016/j.jwpe.2019.100897

  66. Ozel F, Kockar H (2015) Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: reaction time and temperature. J Mag Mag Mater 373:213–216. https://doi.org/10.1016/j.jmmm.2014.02.072

  67. Pakzad K, Alinezhad H, Nasrollahzadeh M (2019) Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram Int 45:17173–17182. https://doi.org/10.1016/j.ceramint.2019.05.272

  68. Pang YL, Lim S, Ong HC, Chong WT (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9–34. https://doi.org/10.1016/j.ceramint.2015.08.144

  69. Park SY, Lee HU, Park ES, Lee SC, Lee JW, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370. https://doi.org/10.1021/am500159p

  70. Pelaez M et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

  71. Pi ZJ et al (2019) Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway. J Clean Prod 235:1103–1115. https://doi.org/10.1016/j.jclepro.2019.07.037

  72. Pires J et al (2016) Magnetically recyclable mesoporous iron oxide–silica materials for the degradation of acetaminophen in water under mild conditions. Polyhedron 106:125–131. https://doi.org/10.1016/j.poly.2016.01.007

  73. Poza-Nogueiras V, Rosales E, Pazos M, Sanromán MÁ (2018) Current advances and trends in electro-Fenton process using heterogeneous catalysts – a review. Chemosphere 201:399–416. https://doi.org/10.1016/j.chemosphere.2018.03.002

  74. Rohani Bastami T, Ahmadpour A, Ahmadi Hekmatikar F (2017) Synthesis of Fe3O4/Bi2WO6 nanohybrid for the photocatalytic degradation of pharmaceutical ibuprofen under solar light. J Ind Eng Chem 51:244–254. https://doi.org/10.1016/j.jiec.2017.03.008

  75. Sato J, Kobayashi M, Kato H, Miyazaki T, Kakihana M (2014) Hydrothermal synthesis of magnetite particles with uncommon crystal facets. J Asian Ceram Soc 2:258–262. https://doi.org/10.1016/j.jascer.2014.05.008

  76. Sciancalepore C et al (2018) Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Mater Chem Phys 207:337–349. https://doi.org/10.1016/j.matchemphys.2017.12.089

  77. Sciancalepore C, Rosa R, Barrera G, Tiberto P, Allia P, Bondioli F (2014) Microwave-assisted nonaqueous sol-gel synthesis of highly crystalline magnetite nanocrystals. Mater Chem Phys 148:117–124. https://doi.org/10.1016/j.matchemphys.2014.07.020

  78. Sephra PJ, Baraneedharan P, Sivakumar M, Thangadurai TD, Nehru K (2018) Size controlled synthesis of SnO2 and its electrostatic self- assembly over reduced graphene oxide for photocatalyst and supercapacitor application. Mater Res Bull 106:103–112. https://doi.org/10.1016/j.materresbull.2018.05.038

  79. Shamaila S, Bano T, Sajjad AKL (2017) Efficient visible light magnetic modified iron oxide photocatalysts. Ceram Int 43:14672–14677. https://doi.org/10.1016/j.ceramint.2017.07.193

  80. Shekofteh-Gohari M, Habibi-Yangjeh A (2015) Ternary ZnO/Ag3VO4/Fe­3O4 nanocomposites: novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation. Solid State Sci 48:177–185. https://doi.org/10.1016/j.solidstatesciences.2015.08.010

  81. Shi W, Du D, Shen B, Cui C, Lu L, Wang L, Zhang J (2016) Synthesis of yolk–shell structured Fe3O4@void@CdS nanoparticles: a general and effective structure Design for Photo-Fenton Reaction. ACS Appl Mater Interfaces 8:20831–20838. https://doi.org/10.1021/acsami.6b07644

  82. Sood S, Umar A, Mehta SK, Kansal SK (2015) Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J Colloid Interface Sci 450:213–223. https://doi.org/10.1016/j.jcis.2015.03.018

  83. Sun Y et al. (2019) Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Sci Total Environ664:312–321 doi:https://doi.org/10.1016/j.scitotenv.2019.02.006

  84. Tan C, Gao N, Deng Y, Deng J, Zhou S, Li J, Xin X (2014) Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J Hazard Mater 276:452–460. https://doi.org/10.1016/j.jhazmat.2014.05.068

  85. Tijani JO, Fatoba OO, Babajide OO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14:27–49. https://doi.org/10.1007/s10311-015-0537-z

  86. Tireli AA, Guimarães IR, Terra JCS, da Silva RR, Guerreiro MC (2015) Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation. Environ Sci Pollut Res 22:870–881. https://doi.org/10.1007/s11356-014-2973-x

  87. Torres-Gomez N, Nava O, Argueta-Figueroa L, Garcia-Contreras R, Baeza-Barrera A, Vilchis-Nestor AR (2019) Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature J Nanomater 2019:15 doi:https://doi.org/10.1155/2019/7921273

  88. Van Hoa N, Khong TT, Thi Hoang Quyen T, Si Trung T (2016) One-step facile synthesis of mesoporous graphene/Fe3O4/chitosan nanocomposite and its adsorption capacity for a textile dye. J Water Process Eng 9:170–178. https://doi.org/10.1016/j.jwpe.2015.12.005

  89. Wang CT, Chou WL, Chung MH, Kuo YM (2010) COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalin 253:129–134. https://doi.org/10.1016/j.desal.2009.11.020

  90. Wang J et al (2016) Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Phys E 75:66–71. https://doi.org/10.1016/j.physe.2015.08.040

  91. Wilkinson J, Hooda PS, Barker J, Barton S, Swinden J (2017) Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environ Pollut 231:954–970. https://doi.org/10.1016/j.envpol.2017.08.032

  92. Wu Q, Feng C, Wang C, Wang Z (2013) A facile one-pot solvothermal method to produce superparamagnetic graphene–Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids Surfaces B 101:210–214. https://doi.org/10.1016/j.colsurfb.2012.05.036

  93. Xi G, Yue B, Cao J, Ye J (2011) Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J 17:5145–5154. https://doi.org/10.1002/chem.201002229

  94. Xiang L, Gao C, Wang Y, Pan Z, Hu D (2014) Particuology Tribological and tribochemical properties of magnetite nanoflakes as additives in oil lubricants. Particuology 17:136–144. https://doi.org/10.1016/j.partic.2013.09.004

  95. Yang S, Wu P, Yang Q, Zhu N, Lu G, Dang Z (2017) Regeneration of iron-montmorillonite adsorbent as an efficient heterogeneous Fenton catalytic for degradation of Bisphenol A: structure, performance and mechanism. Chem Eng J 328:737–747. https://doi.org/10.1016/j.cej.2017.07.093

  96. Yang X-a, M-t S, Leng D, W-b Z (2018) Fabrication of a porous hydrangea-like Fe3O4@MnO2 composite for ultra-trace arsenic preconcentration and determination. Talanta 189:55–64. https://doi.org/10.1016/j.talanta.2018.06.065

  97. Yazdani F, Edrissi M (2010) Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 171:86–89. https://doi.org/10.1016/j.mseb.2010.03.077

  98. Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058

  99. Yegane Badi M, Azari A, Pasalari H, Esrafili A, Farzadkia M (2018) Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J Mol Liq 261:146–154. https://doi.org/10.1016/j.molliq.2018.04.019

  100. Yin H, Lu B, Xu Y, Tang D, Mao X, Xiao W, Wang D, Alshawabkeh AN (2014) Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ Sci Technol 48:8101–8108. https://doi.org/10.1021/es501739v

  101. Zhai P, Xu C, Gao R, Liu X, Li M, Li W, Fu X, Jia C, Xie J, Zhao M, Wang X, Li YW, Zhang Q, Wen XD, Ma D (2016) Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angewandte Chemie - International Edition 55:9902–9907. https://doi.org/10.1002/anie.201603556

  102. Zhang H, Zhu G (2012) One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl Surf Sci 258:4952–4959. https://doi.org/10.1016/j.apsusc.2012.01.127

  103. Zhang X, Han D, Hua Z, Yang S (2016) Porous Fe3O4 and gamma-Fe2O3 foams synthesized in air by sol-gel autocombustion. J Alloys Compd 684:120–124. https://doi.org/10.1016/j.jallcom.2016.05.159

  104. Zhao Y, Lin C, Bi H, Liu Y, Yan Q (2017) Magnetically separable CuFe2O4/AgBr composite photocatalysts: preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl Surf Sci 392:701–707. https://doi.org/10.1016/j.apsusc.2016.09.099

  105. Zhu Z et al (2016) Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ 182:115–122. https://doi.org/10.1016/j.apcatb.2015.09.029

Download references

Acknowledgments

Financial support provided by the Fundamental Research Grant Scheme from Ministry of Higher Education (Grant No. 5F031) and MJIIT Incentive Scheme (Ahmad Masudi) from MJIIT UTM.

Author information

Correspondence to Nurfatehah Wahyuny Che Jusoh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masudi, A., Harimisa, G.E., Ghafar, N.A. et al. Magnetite-based catalysts for wastewater treatment. Environ Sci Pollut Res 27, 4664–4682 (2020). https://doi.org/10.1007/s11356-019-07415-w

Download citation

Keywords

  • Magnetite
  • Control size
  • Photocatalyst
  • Waste
  • Support