Advertisement

MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination

  • Ying Fang
  • Zhaoguang Yang
  • Haipu LiEmail author
  • Xinghao Liu
Review Article

Abstract

MIL-100(Fe), an environmental-friendly and water-stable metal–organic framework (MOF), has caught increasing research and application attention in the recent decade. Thanks to its mesoporous structure and eximious surface area, MIL-100(Fe) has been utilized as precursors for synthesizing various porous materials under high thermolysis temperature, which makes the derivatives of MIL-100(Fe) pretty promising candidates for the decontamination of wastewater. Herein, this review systematically summarizes the versatile synthetic methods and conditions for optimizing the properties of MIL-100(Fe) and its derivatives. Then, diverse environmental applications (i.e., adsorption, photocatalysis, and Fenton-like reaction) of MIL-100(Fe) and its derivatives and the corresponding removal mechanisms are detailed in the discussion. Finally, existing knowledge gaps related to fabrications and applications are discussed to close and promote the future development of MIL-100(Fe) and its derivatives toward environmental applications.

Graphical abstract

Keywords

MIL-100(Fe) Derivatives Fabrication Thermolysis Wastewater treatment 

Notes

Funding information

This work was supported by the National Special Fund for Agro-scientific Research in the Public Interest of China (No. 201503108) and National Natural Science Foundation of China (No. 21771194).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

11356_2019_7318_MOESM1_ESM.doc (17.5 mb)
ESM1 (DOC 17869 kb)

References

  1. Abbasi Z, Shamsaei E, Leong SK, Ladewig B, Zhang X, Wang H (2016) Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous Mesoporous Mater 236:28–37CrossRefGoogle Scholar
  2. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 7:70–71CrossRefGoogle Scholar
  3. Ahmed I, Jeon J, Khan NA, Jhung SH (2013) Synthesis of a metal–organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Crystl Growth Des 12:5878–5881CrossRefGoogle Scholar
  4. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  5. Bezverkhyy I, Weber G, Bellat J-P (2016) Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: effect of temperature and pH. Microporous Mesoporous Mater 219:117–124CrossRefGoogle Scholar
  6. Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631CrossRefGoogle Scholar
  7. Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal-organic frameworks. Chem Rev 114:10575–10612CrossRefGoogle Scholar
  8. Cai J, Wang X, Zhou Y, Jiang L, Wang C (2016) Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe). Phys Chem Chem Phys 18:10864–10867CrossRefGoogle Scholar
  9. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19CrossRefGoogle Scholar
  10. Chen G, Leng X, Luo J, You L, Qu C, Dong X, Huang H, Yin X, Ni J (2019) In vitro toxicity study of a porous iron(III) metal-organic framework. Molecules 24:1211CrossRefGoogle Scholar
  11. Chen YZ, Zhang R, Jiao L, Jiang HL (2018) Metal–organic framework-derived porous materials for catalysis. Coord Chem Rev 362:1–23CrossRefGoogle Scholar
  12. Cheng M, Lai C, Liu Y, Zeng G, Huang D, Zhang C, Qin L, Hu L, Zhou C, Xiong W (2018) Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev 368:80–92CrossRefGoogle Scholar
  13. Cui L, Zhao D, Yang Y, Wang Y, Zhang X (2017) Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe). J Solid State Chem 247:168–172CrossRefGoogle Scholar
  14. Duan S, Li J, Liu X, Wang Y, Zeng S, Shao D, Hayat T (2016) HF-free synthesis of nanoscale metal–organic framework NMIL-100(Fe) as an efficient dye adsorbent. ACS Sustain Chem Eng 4:3368–3378CrossRefGoogle Scholar
  15. Esrafili L, Azhdari Tehrani A, Morsali A (2017) Ultrasonic assisted synthesis of two urea functionalized metal organic frameworks for phenol sensing: a comparative study. Ultrason Sonochem 39:307–312CrossRefGoogle Scholar
  16. Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRefGoogle Scholar
  17. Fan X, Wang W, Li W, Zhou J, Wang B, Zheng J, Li X (2014) Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl Mater Interfaces 6:14994–14999CrossRefGoogle Scholar
  18. Fang Y, Wen J, Zeng G, Jia F, Zhang S, Peng Z, Zhang H (2018a) Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI). Chem Eng J 337:532–540CrossRefGoogle Scholar
  19. Fang Y, Wen J, Zeng G, Shen M, Cao W, Gong J, Zhang Y (2018b) From nZVI to SNCs: development of a better material for pollutant removal in water. Environ Sci Pollut R 25:6175–6195CrossRefGoogle Scholar
  20. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRefGoogle Scholar
  21. Gao C, Chen S, Quan X, Yu H, Zhang Y (2017) Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J Catal 356:125–132CrossRefGoogle Scholar
  22. Gao G, Xing Y, Liu T, Wang J, Hou X (2019) UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method. Microchem J 146:126–133CrossRefGoogle Scholar
  23. Gao J, He M, Lee ZY, Cao W, Xiong WW, Li Y, Ganguly R, Wu T, Zhang Q (2013a) A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks. Dalton T 42:11367–11370CrossRefGoogle Scholar
  24. Gao J, Ye K, He M, Xiong W-W, Cao W, Lee ZY, Wang Y, Wu T, Huo F, Liu X, Zhang Q (2013b) Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media. J Solid State Chem 206:27–31CrossRefGoogle Scholar
  25. Gao J, Ye K, Yang L, Xiong WW, Ye L, Wang Y, Zhang Q (2014) Growing crystalline zinc-1,3,5-benzenetricarboxylate metal-organic frameworks in different surfactants. Inorg Chem 53:691–693CrossRefGoogle Scholar
  26. García Márquez A, Demessence A, Platero-Prats AE, Heurtaux D, Horcajada P, Serre C, Chang J-S, Férey G, de la Peña-O’Shea VA, Boissière C, Grosso D, Sanchez C (2012) Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem 2012:5165–5174CrossRefGoogle Scholar
  27. Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). Water Res 75:224–248CrossRefGoogle Scholar
  28. Guo Y, Tang J, Salunkhe RR, Alothman ZA, Hossain MSA, Malgras V, Yamauchi Y (2017) Effect of various carbonization temperatures on ZIF-67 derived nanoporous carbons. Bull Chem Soc Jpn 90:939–942CrossRefGoogle Scholar
  29. Han L, Qi H, Zhang D, Ye G, Zhou W, Hou C, Xu W, Sun Y (2017) Facile and green synthesis of MIL-100(Fe) with high-yield and its catalytic performance. New J Chem 41Google Scholar
  30. Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Mater 209-210:151–157CrossRefGoogle Scholar
  31. He X, Fang H, Gosztola DJ, Jiang Z, Jena P, Wang WN (2019) Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl Mater Interfaces 11:12516–12524CrossRefGoogle Scholar
  32. Hei S, Jin Y, Zhang F (2014) Fabrication of γ-Fe2O3 nanoparticles by solid-state thermolysis of a metal-organic framework, MIL-100(Fe), for heavy metal ions removal. Aust J Chem 2014:1–6CrossRefGoogle Scholar
  33. Himeur F, Stein I, Wragg DS, Slawin AMZ, Lightfoot P, Morris RE (2010) The ionothermal synthesis of metal organic frameworks, Ln(C9O6H3)((CH3NH)2CO)2, using deep eutectic solvents. Solid State Sci 12:418–421CrossRefGoogle Scholar
  34. Hoa ML, Lu M, Zhang Y (2006) Preparation of porous materials with ordered hole structure. Adv Colloid Interf Sci 121:9–23CrossRefGoogle Scholar
  35. Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, Greneche JM, Margiolaki I, Ferey G (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun:2820–2822Google Scholar
  36. Hu L, Chen L, Fang Y, Wang A, Chen C, Yan Z (2018) Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous Mesoporous Mater 268:207–215CrossRefGoogle Scholar
  37. Huo S-H, Yan X-P (2012) Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem 22:7449CrossRefGoogle Scholar
  38. Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A., 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157, 141-161.CrossRefGoogle Scholar
  39. Isaeva VI, Kustov LM (2016) Microwave activation as an alternative production of metal-organic frameworks. Russ Chem Bull 65:2103–2114CrossRefGoogle Scholar
  40. Jeremias F, Henninger SK, Janiak C (2016) Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway. Dalton T 45:8637–8644CrossRefGoogle Scholar
  41. Jeremias F, Khutia A, Henninger SK, Janiak C (2012) MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J Mater Chem 22:10148–10151CrossRefGoogle Scholar
  42. Jia Y, Jin Q, Li Y, Sun Y, Huo J, Zhao X (2015) Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water. Anal Methods 7:1463–1470CrossRefGoogle Scholar
  43. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2018) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68CrossRefGoogle Scholar
  44. Khan NA, Jhung SH (2015) Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 285:11–23CrossRefGoogle Scholar
  45. Kobielska PA, Howarth AJ, Farha OK, Nayak O (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107CrossRefGoogle Scholar
  46. Lai Y, Chen W, Zhang Z, Qu Y, Gan Y, Li J (2016) Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries. Electrochim Acta 191:733–742CrossRefGoogle Scholar
  47. Li G-C, Zhao W (2017) Zeolitic imidazolate frameworks derived Co nanoparticles anchored on graphene as superior anode material for lithium ion batteries. J Alloys Compd 716:156–161CrossRefGoogle Scholar
  48. Li P, Cheng F-F, Xiong W-W, Zhang Q (2018) New synthetic strategies to prepare metal–organic frameworks. Inorg Chem Front 5:2693–2708CrossRefGoogle Scholar
  49. Liang P, Zhang C, Duan X, Sun H, Liu S, Tade MO, Wang S (2017a) An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ Sci Nano 4:315–324CrossRefGoogle Scholar
  50. Liang P, Zhang C, Duan X, Sun H, Liu S, Tade MO, Wang S (2017b) N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism. ACS Sustain Chem Eng 5:2693–2701CrossRefGoogle Scholar
  51. Liang R, Chen R, Jing F, Qin N, Wu L (2015a) Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton T 44:18227–18236CrossRefGoogle Scholar
  52. Liang R, Jing F, Shen L, Qin N, Wu L (2015b) M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: efficient visible-light photocatalysts for redox reactions in water. Nano Res 8:3237–3249CrossRefGoogle Scholar
  53. Lin JB, Lin RB, Cheng XN, Zhang JP, Chen XM (2011) Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem Commun 47:9185–9187CrossRefGoogle Scholar
  54. Liu C, Sun F, Zhou S, Tian Y, Zhu G (2012) Facile synthesis of ZIF-8 nanocrystals in eutectic mixture. CrystEngComm 14:8365CrossRefGoogle Scholar
  55. Liu Z-M, Wu S-H, Jia S-Y, Qin F-X, Zhou S-M, Ren H-T, Na P, Liu Y (2014) Novel hematite nanorods and magnetite nanoparticles prepared from MIL-100(Fe) template for the removal of As(V). Mater Lett 132:8–10CrossRefGoogle Scholar
  56. Liu Z, Chen J, Wu Y, Li Y, Zhao J, Na P (2018) Synthesis of magnetic orderly mesoporous alpha-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal. J Hazard Mater 343:304–314CrossRefGoogle Scholar
  57. Lu HS, Bai L, Xiong WW, Li P, Ding J, Zhang G, Wu T, Zhao Y, Lee JM, Yang Y, Geng B, Zhang Q (2014) Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks. Inorg Chem 53:8529–8537CrossRefGoogle Scholar
  58. Luo S, Wang J (2018) MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environ Sci Pollut R 25:5521–5528CrossRefGoogle Scholar
  59. Lv H, Zhao H, Cao T, Qian L, Wang Y, Zhao G (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89CrossRefGoogle Scholar
  60. Mahmoodi NM, Abdi J, Oveisi M, Alinia Asli M, Vossoughi M (2018) Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Mater Res Bull 100:357–366CrossRefGoogle Scholar
  61. Malgras V, Tang J, Wang J, Kim J, Torad NL, Dutta S, Ariga K, Hossain MSA, Yamauchi Y, Wu KCW (2019) Fabrication of nanoporous carbon materials with hard- and soft-templating approaches: a review. J Nanosci Nanotechnol 19:3673–3685CrossRefGoogle Scholar
  62. Mao C, Kong A, Wang Y, Bu X, Feng P (2015) MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale 7:10817–10822CrossRefGoogle Scholar
  63. Marpaung F, Kim M, Khan JH, Konstantinov K, Yamauchi Y, Hossain MSA, Na J, Kim J (2019) Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem Asian J 14:1331–1343CrossRefGoogle Scholar
  64. Mohammadifard Z, Saboori R, Mirbagheri NS, Sabbaghi S (2019) Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation. Environ Pollut 251:783–791CrossRefGoogle Scholar
  65. Moradi, S.E., Dadfarnia, S., Haji Shabani, A.M., Emami, S., 2014. Removal of Congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat.t 56, 709-721.CrossRefGoogle Scholar
  66. Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259CrossRefGoogle Scholar
  67. Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214CrossRefGoogle Scholar
  68. Qing L, Hengyu P, Drew H, Ruiguo C, Guoqi Z, Haifeng L, Kangbing W, Jaephil C, Gang W (2015) Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small 11:1443–1452CrossRefGoogle Scholar
  69. Qu Q, Gao T, Zheng H, Li X, Liu H, Shen M, Shao J, Zheng H (2015) Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 92:119–125CrossRefGoogle Scholar
  70. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111CrossRefGoogle Scholar
  71. Samal M, Panda J, Biswal BP, Sahu R (2018) Kitchen grinder: a tool for the synthesis of metal–organic frameworks towards size selective dye adsorption. CrystEngComm 20:2486–2490CrossRefGoogle Scholar
  72. Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J, Wu Z, Li Z, Mo G, Xu Y, Song J, Liu C, Tan X, Luo T, Zhang B, Han B (2017) Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat Commun 8:175CrossRefGoogle Scholar
  73. Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and Microbiology of permeable reactive barriers for in situ groundwater clean up. CRC Crit Rev Microbiol 26:221–264CrossRefGoogle Scholar
  74. Seo Y-K, Yoon JW, Lee JS, Lee UH, Hwang YK, Jun C-H, Horcajada P, Serre C, Chang J-S (2012) Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater 157:137–145CrossRefGoogle Scholar
  75. Shen K, Chen X, Chen J, Li Y (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6:5887–5903CrossRefGoogle Scholar
  76. Shi J, Hei S, Liu H, Fu Y, Zhang F, Zhong Y, Zhu W (2013) Synthesis of MIL-100(Fe) at low temperature and atmospheric pressure. Aust J Chem 2013:1–4Google Scholar
  77. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A review Microchem J 135:33–38CrossRefGoogle Scholar
  78. Sun Y, Gao K, Zhang Y, Zou H (2017) Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier. Environ Sci Pollut R 24:28142–28151CrossRefGoogle Scholar
  79. Tan F, Liu M, Li K, Wang Y, Wang J, Guo X, Zhang G, Song C (2015) Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem Eng J 281:360–367CrossRefGoogle Scholar
  80. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100CrossRefGoogle Scholar
  81. Tang J, Wang J (2018a) Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chem Eng J 351:1085–1094CrossRefGoogle Scholar
  82. Tang J, Wang J (2018b) Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environ Sci Technol 52:5367–5377CrossRefGoogle Scholar
  83. Tannert N, Gökpinar S, Hastürk E, Nießing S, Janiak C (2018) Microwave-assisted dry-gel conversion—a new sustainable route for the rapid synthesis of metal–organic frameworks with solvent re-use. Dalton T 29:9850–9860CrossRefGoogle Scholar
  84. Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156CrossRefGoogle Scholar
  85. Thomas-Hillman I, Laybourn A, Dodds C, Kingman SW (2018) Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. J Mater Chem A 6:11564–11581CrossRefGoogle Scholar
  86. Tong M, Liu D, Yang Q, Devautour-Vinot S, Maurin G, Zhong C (2013) Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J Mater Chem A 1:8534CrossRefGoogle Scholar
  87. Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10:2096–2107CrossRefGoogle Scholar
  88. Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503CrossRefGoogle Scholar
  89. Tsai F-C, Xia Y, Ma N, Shi J-J, Jiang T, Chiang T-C, Zhang Z-C, Tsen W-C (2014) Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate. Desalin Water Treat 57:3218–3226CrossRefGoogle Scholar
  90. Wang C-C, Du X-D, Li J, Guo X-X, Wang P, Zhang J (2016) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216CrossRefGoogle Scholar
  91. Wang D, Gilliland SE 3rd, Yi X, Logan K, Heitger DR, Lucas HR, Wang WN (2018a) Iron mesh-based metal organic framework filter for efficient arsenic removal. Environ Sci Technol 52:4275–4284CrossRefGoogle Scholar
  92. Wang D, Jia F, Wang H, Chen F, Fang Y, Dong W, Zeng G, Li X, Yang Q, Yuan X (2018b) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci 519:273–284CrossRefGoogle Scholar
  93. Wang C, Luan J, Wu C (2019) Metal-organic frameworks for aquatic arsenic removal. Water Res 158:370–382CrossRefGoogle Scholar
  94. Wang Y, Xu Y, Ma H, Xu R, Liu H, Li D, Tian Z (2014) Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous Mesoporous Mater 195:50–59CrossRefGoogle Scholar
  95. Wang Z, Yang J, Li Y, Zhuang Q, Gu J (2018c) In situ carbothermal synthesis of nanoscale zero-valent iron functionalized porous carbon from metal-organic frameworks for efficient detoxification of chromium(VI). Eur J Inorg Chem 2018:23–30CrossRefGoogle Scholar
  96. Wen J, Fang Y, Zeng G (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643CrossRefGoogle Scholar
  97. Wezendonk TA, Santos VP, Nasalevich MA, Warringa QSE, Dugulan AI, Chojecki A, Koeken ACJ, Ruitenbeek M, Meima G, Islam H-U, Sankar G, Makkee M, Kapteijn F, Gascon J (2016) Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer–Tropsch catalysts. ACS Catal 6:3236–3247CrossRefGoogle Scholar
  98. Wu Z-F, Hu B, Feng M-L, Huang X-Y, Zhao Y-B (2011) Ionothermal synthesis and crystal structure of a magnesium metal-organic framework. Inorg Chem Commun 14:1132–1135CrossRefGoogle Scholar
  99. Xiahou Z-J, Wang Y-L, Liu Q-Y, Wei J-J, Chen L-L (2013) Ionothermal synthesis of a 3D heterometallic coordination polymer based on the rod shaped copper(II)–sodium(I)-carboxylate secondary building units with a PCU topology. Inorg Chem Commun 38:62–64CrossRefGoogle Scholar
  100. Xiao J-D, Qiu L-G, Jiang X, Zhu Y-J, Ye S, Jiang X (2013) Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework. Carbon 59:372–382CrossRefGoogle Scholar
  101. Xie Z-L, Feng M-L, Li J-R, Huang X-Y (2008) Ionothermal synthesis and crystal structure of a 2D metal organic framework: [emim]2[Cd2(btec)Br2] (emim=1-ethyl-3-methylimidazolium, btec=1,2,4,5-benzenetetracarboxylate). Inorg Chem Commun 11:1143–1146CrossRefGoogle Scholar
  102. Xie Z, He Z, Feng X, Xu W, Cui X, Zhang J, Yan C, Carreon MA, Liu Z, Wang Y (2016) Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 8:10324–10333CrossRefGoogle Scholar
  103. Xing T, Lou Y, Bao Q, Chen J (2014) Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation. CrystEngComm 16:8994–9000CrossRefGoogle Scholar
  104. Xiong W, Tong J, Yang Z, Zeng G, Zhou Y, Wang D, Song P, Xu R, Zhang C, Cheng M (2017) Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: performance and mechanism. J Colloid Interface Sci 493:17–23CrossRefGoogle Scholar
  105. Xiong W, Zeng G, Yang Z, Zhou Y, Zhang C, Cheng M, Liu Y, Hu L, Wan J, Zhou C (2018) Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci Total Environ 627:235–244CrossRefGoogle Scholar
  106. Yan X, Yang Y, Hu X, Zhou M, Komarneni S (2016) Synthesis of mesoporous carbons with narrow pore size distribution from metal-organic framework MIL-100(Fe). Microporous Mesoporous Mater 234:162–165CrossRefGoogle Scholar
  107. Yang SJ, Park CR (2012) Preparation of highly moisture-resistant black-colored metal organic frameworks. Adv Mater 24:4010–4013CrossRefGoogle Scholar
  108. Yang W, Li X, Li Y, Zhu R, Pang H (2019) Applications of metal-organic-framework-derived carbon materials. Adv Mater 31:e1804740Google Scholar
  109. Yang X, Hu X, Wang X, Fu W, He X, Asefa T (2018) Metal-organic framework-derived Fe3C@NC nanohybrids as highly-efficient oxygen reduction electrocatalysts in both acidic and basic media. J Electroanal Chem 823:755–764CrossRefGoogle Scholar
  110. Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419CrossRefGoogle Scholar
  111. Yu J, Mu C, Yan B, Qin X, Shen C, Xue H, Pang H (2017a) Nanoparticle/MOF composites: preparations and applications. Mater Horiz 4:557–569CrossRefGoogle Scholar
  112. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Ng EP, Chang JS (2017b) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11CrossRefGoogle Scholar
  113. Yu X, Toh YS, Zhao J, Nie L, Ye K, Wang Y, Li D, Zhang Q (2015) Surfactant-thermal method to prepare two new cobalt metal-organic frameworks. J Solid State Chem 232:14–18CrossRefGoogle Scholar
  114. Yuan B, Wang X, Zhou X, Xiao J, Li Z (2019) Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem Eng J 355:679–686CrossRefGoogle Scholar
  115. Zhang F, Jin Y, Shi J, Zhong Y, Zhu W, El-Shall MS (2015a) Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244CrossRefGoogle Scholar
  116. Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W (2015b) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190CrossRefGoogle Scholar
  117. Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710CrossRefGoogle Scholar
  118. Zhang L, Liu H, Shi W, Cheng P (2019) Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord Chem Rev 388:293–309CrossRefGoogle Scholar
  119. Zhang X, Yang Y, Lv X, Wang Y, Cui L (2017) Effects of preparation method on the structure and catalytic activity of Ag–Fe2O3 catalysts derived from MOFs. Catalysts 7:382CrossRefGoogle Scholar
  120. Zhang X, Yang Y, Song L, Wang Y, He C, Wang Z, Cui L (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89CrossRefGoogle Scholar
  121. Zhao J, Liu X, Wu Y, Li D-S, Zhang Q (2019) Surfactants as promising media in the field of metal-organic frameworks. Coord Chem Rev 391:30–43CrossRefGoogle Scholar
  122. Zhao J, Wang Y, Dong W, Wu Y, Li D, Liu B, Zhang Q (2015) A new surfactant-introduction strategy for separating the pure single-phase of metal-organic frameworks. Chem Commun 51:9479–9482CrossRefGoogle Scholar
  123. Zhao Z, Zhang Z, Li C, Wu H, Wang J, Lu Y (2018) MOF derived iron oxide-based smart plasmonic Ag/Au hollow and porous nanoshells “ultra-microelectrodes” for ultra-sensitive detection of arsenic. J Mater Chem A 6:16164–16169CrossRefGoogle Scholar
  124. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899CrossRefGoogle Scholar
  125. Zhou A, Guo R-M, Zhou J, Dou Y, Chen Y, Li J-R (2018) Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng 6:2103–2111CrossRefGoogle Scholar
  126. Zhu BJ, Yu XY, Jia Y, Peng FM, Sun B, Zhang MY, Luo T, Liu JH, Huang XJ (2012) Iron and 1,3,5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116:8601–8607CrossRefGoogle Scholar
  127. Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512CrossRefGoogle Scholar
  128. Zhuang J-L, Liu X-Y, Mao H-L, Wang C, Cheng H, Zhang Y, Du X, Zhu S-B, Ren B (2019) Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organic frameworks for supercapacitors. J. Power Sources 429:9–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Center for Environment and Water Resources, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyChangshaPeople’s Republic of China

Personalised recommendations