Advertisement

CR(VI) phytoremediation by hairy roots of Brassica napus: assessing efficiency, mechanisms involved, and post-removal toxicity

  • Romina Perotti
  • Cintia Elizabeth Paisio
  • Elizabeth Agostini
  • María Inés Fernandez
  • Paola Solange GonzálezEmail author
Research Article

Abstract

Industrial activities such as leather tanning involve the use of highly toxic inorganic pollutants, like Chromium (Cr). This work evaluated Cr(VI) remediation by hairy roots (HR) of Brassica napus, paying close attention to the mechanisms involved and the toxicity of post-removal solutions. Results showed that these roots were capable of tolerating concentrations of up to 10 mg L−1 Cr(VI), while higher concentrations were toxic for HR development. Removal efficiency was assessed through the use of synthetic solutions containing different initial Cr(VI) concentrations (2, 5, or 10 mg L−1). Regardless of these initial concentrations, the highest removal efficiency values were between 80 and 90% after 24 and 48 h of treatment, using a 2.0 g inoculum. The mechanisms involved were Cr accumulation (60%) and to a lesser extent, adsorption to the root biomass (30%). A fraction of Cr(VI) was intracellularly reduced to Cr(III), which suggests reductases may have played a role. Additionally, post-removal toxicity was evaluated through two bioassays (Lactuca sativa L. and AMPHITOX test) after the removal of 10 mg L−1 Cr(VI). The treated solutions showed moderate phytotoxicity for L. sativa L. and no toxicity for R arenarum. The ability of HR to remove 10 mg L−1 Cr(VI) from real tannery effluents collected from a regional industry (Córdoba province, Argentina) was also determined. The high removal efficiency observed (98%) demonstrates this system can be successful in treating complex wastewaters.

Keywords

Brassica napus Hairy roots Chromium Phytoremediation Tannery effluent Argentina 

Notes

Acknowledgments

C.E.P, E.A, and P.S.G are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). R.P has a fellowship from FONCyT.

Funding information

We wish to thank PPI (SECyT- UNRC), CONICET, and PICT (FONCyT) for financial support.

References

  1. Abel Migid HM, Azab YA, Ibrahim WM (2007) Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicol Environ Saf 66(1):57–64.  https://doi.org/10.1016/J.ECOENV.2005.10.011 CrossRefGoogle Scholar
  2. Agostini E, Milrad SR, Tigier HA (1997) Production of peroxidases by hairy roots of Brassica napus. Plant Cell Tissue Organ Cult 47:177–182.  https://doi.org/10.1007/bf02318955 CrossRefGoogle Scholar
  3. Agostini E, Talano MA, González PS, Oller AL, Medina MI (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotechnol 97:1017–1030.  https://doi.org/10.1007/s00253-012-4658-z CrossRefGoogle Scholar
  4. Alfaro-Saldana EF, Perez-Molphe-Balch E, Santos-Diaz MD (2016) Generation of transformed roots of Scirpus americanus Pers. and study of their potential to remove Pb2+ and Cr3+. Plant Cell Tissue Organ Cult 127:15–24.  https://doi.org/10.1007/s11240-016-1025-2 CrossRefGoogle Scholar
  5. Angelini VA, Orejas J, Medina MI et al (2011) Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J Hazard Mater 185:269–274.  https://doi.org/10.1016/j.jhazmat.2010.09.028 CrossRefGoogle Scholar
  6. APHA/AWWA/WEF (2012) Standard methods for the examination of water and wastewater. Stand Methods 541. doi: ISBN 9780875532356Google Scholar
  7. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe(3)O(4) magnetic nanocomposite. J Hazard Mater 190:381–390.  https://doi.org/10.1016/j.jhazmat.2011.03.062 CrossRefGoogle Scholar
  8. Coniglio MS, Busto VD, González PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere 72:1035–1042.  https://doi.org/10.1016/j.chemosphere.2008.04.003 CrossRefGoogle Scholar
  9. De Oliveira LM, Ma LQ, Santos JAG et al (2014) Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 184:187–192.  https://doi.org/10.1016/j.envpol.2013.08.025 CrossRefGoogle Scholar
  10. Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107.  https://doi.org/10.1007/s10725-010-9454-0 CrossRefGoogle Scholar
  11. Dmitrović S, Mitić N, Budimir S et al (2015) Morpho-histological and bioherbicidal evaluation of wild-type and transformed hairy roots of goosefoot. South African J Bot 96:53–61.  https://doi.org/10.1016/j.sajb.2014.11.002 CrossRefGoogle Scholar
  12. Eggs N, Salvarezza S, Azario R, et al (2012) Adsorption of hexavalent chromium in the chemically modified rice hask. Av en Ciencias e Ing 3(3):141–151. ISSN: Disponible en: https://www.redalyc.org/articulo.oa?id=3236/323627687014
  13. El Azhari A, Rhoujjati A, El Hachimi ML, Ambrosi J (2017) Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicol Environ Saf 144:464–474.  https://doi.org/10.1016/j.ecoenv.2017.06.051 CrossRefGoogle Scholar
  14. Fernandez M, Paisio CE, Perotti R, Pereira PP, Agostini E, González PS (2019) Laboratory and field microcosms as useful experimental systems to study the bioaugmentation treatment of tannery effluents. J Environ Manag 234:503–511.  https://doi.org/10.1016/j.jenvman.2019.01.019 CrossRefGoogle Scholar
  15. Gascó G, Álvarez ML, Paz-Ferreiro MA (2019) Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 231:562–570.  https://doi.org/10.1016/j.chemosphere.2019.05.168 CrossRefGoogle Scholar
  16. Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015b) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164.  https://doi.org/10.1016/j.chemosphere.2014.06.029 CrossRefGoogle Scholar
  17. Gill RA, Zhang N, Ali B, Farooq MA, Xu J, Gill MB, Mao B, Zhou W (2016) Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black- and yellow- seeded Brassica napus L. Environ Sci Pollut Res 23:20483–20496.  https://doi.org/10.1007/s11356-016-7167-2 CrossRefGoogle Scholar
  18. González PS, Ambrosio LF, Paisio CE, Talano MA, Medina MI, Agostini E (2014) Chromium (VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved. Environ Sci Pollut Res 21:13551–13559.  https://doi.org/10.1007/s11356-014-3311-z CrossRefGoogle Scholar
  19. Herkovits J, Pérez-Coll CS (1999) Bioensayos para test de toxicidad con embriones de anfibios (“ANFITOX”). Ingeniería Sanitaria y Ambiental 42:24–30Google Scholar
  20. Ibañez S, Talano M, Ontañon O, Suman J, Medina MI, Macek T, Agostini E (2016) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnol 33:625–635.  https://doi.org/10.1016/j.nbt.2015.11.008 CrossRefGoogle Scholar
  21. Islam B, Musa A, Ibrahim E et al (2014) Evaluation and characterization of tannery wastewater. J For Prod Ind 3:141–150 ISSN:2325–4513(PRINT) ISSN 2325 - 453X (ONLINE)Google Scholar
  22. Jha P, Jobby R, Desai NS (2016) Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. And assessment of degraded dye toxicity with human keratinocyte cell line. J Hazard Mater 311:158–167.  https://doi.org/10.1016/j.jhazmat.2016.02.058 CrossRefGoogle Scholar
  23. Li Q, Chen B, Lin P, Zhou J, Zhan J, Shen Q, Pan X (2016) Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes. Int J Phytoremediation 18:103–109.  https://doi.org/10.1080/15226514.2014.898017 CrossRefGoogle Scholar
  24. Matteoda E, Blarasin M, Damilano G, Cabrera A, Albo J (2009) Cromo en aguas subterráneas y superficiales en el entorno de una curtiembre, relación con valores de fondo natural. Elena (Córdoba). Argentina Boletín Geológico y Minero 120(4):617–630Google Scholar
  25. Módenes AN, de Oliveira AP, Espinoza-Quiñones FR, Trigueros DEG, Kroumov AD, Bergamasco R (2017) Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass. Chemosphere 172:373–383.  https://doi.org/10.1016/j.chemosphere.2017.01.038 CrossRefGoogle Scholar
  26. Monisha S, Sathesh Kumar A, Sinha P, Arunachalam KD (2018) Brassica juncea (Indian mustard plant) as a phytoremediator for chromium. Int J Pharm Sci Rev Res 49(1):71–76 ISSN 0976 – 044XGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Ojeda Suárez J.T. (2004) Manual de análisis de aguas residuales.https//buenastareas.com/ensayos/Manual-De-Analisis-De-Aguas-Residuales/1217680.html
  29. Ontañon OM, González PS, Agostini E (2015a) Optimization of simultaneous removal of Cr (VI) and phenol by a native bacterial consortium: its use for bioaugmentation of co-polluted effluents. J Appl Microbiol 119:1011–1022.  https://doi.org/10.1111/jam.12913 CrossRefGoogle Scholar
  30. Ontañon OM, González PS, Agostini E (2015b) Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. Environ Sci Pollut Res 22:13014–13023.  https://doi.org/10.1007/s11356-015-4571-y CrossRefGoogle Scholar
  31. Pentreath V, González E, Barquín M et al (2015) Bioensayo de toxicidad aguda con plantas nativas para evaluar un derrame de petróleo. Rev salud Ambient 15:13–20Google Scholar
  32. Rathore SS, Shekhawat K, Dass A, Kandpal BK, Singh VK (2019) Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci India Sect B Biol Sci 89:419–427.  https://doi.org/10.1007/s40011-017-0885-5 CrossRefGoogle Scholar
  33. Revathi K, Ansar Ali P, Sudha P (2017) Phytoremediation efficiency of Brassica juncea plant from heavy metals Cr , Cu , Cd and Pb spiked Soil. Int J Nov Trends Pharm Sci 7:178–185 ISSN: 2277–2782Google Scholar
  34. Rezania S, Taib SM, Md Din MF et al (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599.  https://doi.org/10.1016/j.jhazmat.2016.07.053 CrossRefGoogle Scholar
  35. Rizwan M, Ali S, Zia ur Rehman M et al (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631–632:1175–1191.  https://doi.org/10.1016/j.scitotenv.2018.03.104 CrossRefGoogle Scholar
  36. Shaikh RB, Saifullah B, ur Rehman F, Shaikh RI (2018) Greener method for the removal of toxic metal ions from the wastewater by application of agricultural waste as an adsorbent. Water (Switzerland) 10(10):1316–1320.  https://doi.org/10.3390/w10101316 CrossRefGoogle Scholar
  37. Sobrero MC, Ronco A (2004) Toxicity assay with lettuce seeds. Toxicol. Assays water Qual. Evaluat. Methods 71–79 MéxicoGoogle Scholar
  38. Sosa Alderete LG, Ibáñez SG, Agostini E et al (2012) Phytoremediation of phenol at pilot scale by tobacco hairy roots. Int J Environ Sci 3(1):398–401.  https://doi.org/10.6088/ijes.2012030131038 CrossRefGoogle Scholar
  39. Tamilselvan N, Saurav K, Kannabiran K (2012) Biosorption of Cr (VI), Cr (III), Pb (II) and cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass. J Ocean Univ China 11:52–58.  https://doi.org/10.1007/s11802-012-1843-8 CrossRefGoogle Scholar
  40. Tepanosyan G, Sahakyan L, Belyaeva O, Maghakyan N, Saghatelyan A (2017) Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 184:1230–1240.  https://doi.org/10.1016/j.chemosphere.2017.06.108 CrossRefGoogle Scholar
  41. Terzi H, Yıldız M (2014) Variations in chromium tolerance and accumulation among canola (Brassica napus L.) cultivars. Bull Environ Contam Toxicol 93:113–119.  https://doi.org/10.1007/s00128-014-1255-0 CrossRefGoogle Scholar
  42. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296.  https://doi.org/10.1016/j.jenvman.2015.06.030 CrossRefGoogle Scholar
  43. Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052.  https://doi.org/10.1016/S0043-1354(02)00133-1www.cba.gov.ar/wp-content/4p96humuzp/2014/07/Vertido-de-Efluentes-Decreto-847.pdf CrossRefGoogle Scholar
  44. Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN (2019) Phytotoxicity , cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a common effluent treatment plant (CETP) in Unnao district , India using Vigna radiata and Allium cepa. Chemosphere 224:324–332.  https://doi.org/10.1016/j.chemosphere.2019.02.124 Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a common effluent treatment plant (CETP) in Unnao district, India using Vigna radiata and Allium cepaCrossRefGoogle Scholar
  45. Zucconi F, Pera A, Forte M, De Bertoldi M (1981) Evaluating toxicity of immature compost. Biocycle 22:54–57 Doi: 216.54.119.118Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Romina Perotti
    • 1
  • Cintia Elizabeth Paisio
    • 1
  • Elizabeth Agostini
    • 1
  • María Inés Fernandez
    • 1
  • Paola Solange González
    • 1
    Email author
  1. 1.Departamento de Biología Molecular, FCEFQyNUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations