Advertisement

TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells

  • Maqusood AhamedEmail author
  • Mohd Javed Akhtar
  • ZabnAllah M. Alaizeri
  • Hisham A. Alhadlaq
Research Article

Abstract

Widespread application of titanium dioxide nanoparticles (nTiO2) and ubiquitous cadmium (Cd) pollution may increase their chance of co-existence in the natural environment. Toxicological information on co-exposure of nTiO2 and Cd in mammalian models is largely lacking. Hence, we studied the combined effects of nTiO2 and Cd in human liver (HepG2) and breast cancer (MCF-7) cells. We observed that nTiO2 did not produce toxicity to HepG2 and MCF-7 cells. However, moderate concentration of Cd exposure caused cytotoxicity to both cells. Interestingly, non-cytotoxic concentration of nTiO2 effectively enhanced the oxidative stress response of Cd indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and antioxidants depletion (glutathione level and glutathione reductase, superoxide dismutase, and catalase enzymes). Moreover, nTiO2 potentiated the Cd-induced apoptosis in both cells suggested by altered expression of p53, bax, and bcl-2 genes along with low mitochondrial membrane potential. Cellular uptake results demonstrated that nTiO2 facilitates the internalization of Cd into the cells. Overall, this study demonstrated that non-cytotoxic concentration of nTiO2 enhanced the toxicological potential of Cd in human cells. Therefore, more attention should be paid on the combine effects of nTiO2 and Cd on human health.

Keywords

TiO2 nanoparticles Cd pollution Co-exposure Human health hazard Oxidative stress Apoptosis 

Notes

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG- 1439-72.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahamed M, Akhtar MJ, Alhadlaq HA (2019) Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol in Vitro 57:18–27CrossRefGoogle Scholar
  2. Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA (2015) Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (London) 10:2365–2377CrossRefGoogle Scholar
  3. Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108CrossRefGoogle Scholar
  4. Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A (2016) Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Sci Rep 6:30196CrossRefGoogle Scholar
  5. Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A (2017) Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci Rep 7:17662CrossRefGoogle Scholar
  6. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A (2017) Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 1861:802–813CrossRefGoogle Scholar
  7. Alhadlaq HA, Akhtar MJ, Ahamed M (2019) Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO2 nanoparticles are based on similar mode of action. Toxicology 411:71–80CrossRefGoogle Scholar
  8. Alqudami A, Alhemiary NA, Munassar S (2012) Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique. Environ Sci Pollut Res 19:2832–2841CrossRefGoogle Scholar
  9. An X, Liu H, Qu J, Moniz SJA, Tang J (2015) Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu–TiO2–Cu2O and the underlying reaction mechanism. New J Chem 39:314–320CrossRefGoogle Scholar
  10. Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, Legrand M, Davis K, Ettinger AS, Fraser WD (2016) Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC Study. Chemosphere 163:270–282CrossRefGoogle Scholar
  11. Bauer R, Demeter I, Hasemann V, Johansen JT (1980) Structural properties of the zinc site in Cu,Zn-superoxide dismutase; perturbed angular correlation of gamma ray spectroscopy on the Cu, 111Cd-superoxide dismutase derivative. Biochem Biophys Res Commun 94:1296–1302CrossRefGoogle Scholar
  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  13. Capaldo A, Gay F, Scudiero R, Trinchella F, Caputo I, Lepretti M, Marabotti A, Esposito C, Laforgia V (2016) Histological changes, apoptosis and metallothionein levels in triturus carnifex (amphibia, urodela) exposed to environmental cadmium concentrations. Aquat Toxicol 173:63–73CrossRefGoogle Scholar
  14. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefGoogle Scholar
  15. Carocho M, Ferreira IR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25CrossRefGoogle Scholar
  16. Cesmeli S, Avci CB (2018) Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target 5:1–5Google Scholar
  17. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  18. Cheng FM, Zhao NC, Xu HM, Li Y, Zhang WF, Zhu ZW, Chen MX (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in Southeast China. Sci Total Environ 359:156–166CrossRefGoogle Scholar
  19. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762CrossRefGoogle Scholar
  20. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940CrossRefGoogle Scholar
  21. Ellman GI (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
  22. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137CrossRefGoogle Scholar
  23. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395CrossRefGoogle Scholar
  24. Fang Q, Shi Q, Guo Y, Hua J, Wang X, Zhou B (2016) Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50:1005–1013CrossRefGoogle Scholar
  25. Fowler BA (2009) Monitoring of human populations for early markers of cadmium toxicity: a review. Toxicol Appl Pharmacol 238:294–300CrossRefGoogle Scholar
  26. Franco R, Cidlowsk JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314CrossRefGoogle Scholar
  27. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262CrossRefGoogle Scholar
  28. Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRefGoogle Scholar
  29. Guo M, Xu X, Yan X, Wang S, Gao S, Zhu S (2013) In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice. J Hazard Mater 260:780–788CrossRefGoogle Scholar
  30. Hossain F, Perales-Perez OJ, Hwang S, Roman F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059CrossRefGoogle Scholar
  31. Ishikawa K, Ishii H, Saito T (2006) DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol 25:406–411CrossRefGoogle Scholar
  32. Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Le VN, Han Y, Wang Y, Xing B, Liu L, Cao W (2017) Jointed toxicity of TiO2 NPs and cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93CrossRefGoogle Scholar
  33. Kocbek P, Teskac K, Kreft ME, Kristl J (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–1917CrossRefGoogle Scholar
  34. Li L, Sillanpaa M, Schultz E (2017) Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna. J Nanopart Res 19:223CrossRefGoogle Scholar
  35. Liu S, Jiang W, Wu B, Yu J, Yu H, Zhang XX, Torres-Duarte C, Cherr GN (2016) Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606CrossRefGoogle Scholar
  36. Liu Y, Martin M (2001) p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22:851–860CrossRefGoogle Scholar
  37. Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv 4:1128–1132CrossRefGoogle Scholar
  38. Manesh RR, Grassi G, Bergami E, Marques-Santos LF, Faleri C, Liberatori G, Corsi I (2018) Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol Environ Saf 148:359–366CrossRefGoogle Scholar
  39. McGarry T, Biniecka M, Veale DJ, Fearon U (2018) Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 125:15–24CrossRefGoogle Scholar
  40. Miranda RR, Bezerra AG Jr, Oliveira Ribeiro CA, Randi MA, Voigt CL, Skytte L, Rasmussen KL, Kjeldsen F, Filipak Neto F (2017) Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol in Vitro 40:134–143CrossRefGoogle Scholar
  41. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  42. Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206CrossRefGoogle Scholar
  43. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  44. Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, Ho HK, Leong DT (2019) Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol 14:279–286CrossRefGoogle Scholar
  45. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRefGoogle Scholar
  46. Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M (2014) Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna. Environ Sci Technol 48:6965–6972CrossRefGoogle Scholar
  47. Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, Chong HC, Tan SM, Loo SC, Ng KW, Xie JP, Ong CN, Tan NS, Leong DT (2013) Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the hemophilic interaction of VE-cadherin. Nat Commun 4:1673CrossRefGoogle Scholar
  48. Shaban M, Poostforooshan J, Weber AP (2017) Surface-initiated polymerization on unmodified inorganic semiconductor nanoparticles via surfactant-free aerosol-based synthesis toward core–shell nanohybrids with a tunable shell thickness. J Mater Chem A 5:18651–18663CrossRefGoogle Scholar
  49. Shandilya N, Bihan OL, Bressot C, Morgeneyer M (2015) Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol 49:2163–2170CrossRefGoogle Scholar
  50. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870CrossRefGoogle Scholar
  51. Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8:e69534CrossRefGoogle Scholar
  52. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394CrossRefGoogle Scholar
  53. Stacchiotti A, Morandini F, Bettoni F, Schena I, Lavazza A, Giovanni P, Apostoli P, Rezzani R, Francesca M (2009) Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 264:215–224CrossRefGoogle Scholar
  54. Tan C, Fan WH, Wang WX (2012) Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna. Environ Sci Technol 46:469–476CrossRefGoogle Scholar
  55. Tan C, Wang WX (2014) Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut 186:36–42CrossRefGoogle Scholar
  56. Tan C, Wang WX (2017) Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environ Pollut 23:311–318CrossRefGoogle Scholar
  57. Tee JK, Setyawati MI, Peng F, Leong DT, Ho HK (2019) Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology 13:682–700CrossRefGoogle Scholar
  58. Thevenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239CrossRefGoogle Scholar
  59. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789CrossRefGoogle Scholar
  60. Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A (2017) Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 11:978–995CrossRefGoogle Scholar
  61. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250CrossRefGoogle Scholar
  62. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng FD (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after sub chronic dermal exposure. Toxicol Lett 191:1–8CrossRefGoogle Scholar
  63. Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z (2016) Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res 23:23134–23144CrossRefGoogle Scholar
  64. Yang WW, Miao AJ, Yang LY (2012) Cd2+ toxicity to green alga Chlamydomonas reinhardtii as influenced by its adsorption of TiO2 engineered nanoparticles. PLoS One 7:1–8Google Scholar
  65. Yang WW, Wang Y, Huang B, Wang NX, Wei ZB, Luo J, Miao AJ, Yang LY (2014) TiO2 nanoparticles act as a carrier of cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ Sci Technol 48:7568–7575CrossRefGoogle Scholar
  66. Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Fernandes EA, Hendriksen PJ, Marvin HP, Peijnenburg AA, Bouwmeester H (2016) Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 10:1431–1441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations