Skip to main content

Advertisement

Log in

Assessment of bioaccumulation of cu and Pb in experimentally exposed spiders, Lycosa terrestris and Pardosa birmanica, using different exposure routes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Major concerns exist regarding the environmental and human health risks caused by exposure to heavy metals. Spiders are often used as a model in ecotoxicological studies to assess soil pollution. Here, we measured the bioaccumulation of copper (Cu) and lead (Pb) in spiders, Lycosa terrestris and Pardosa birmanica, by inductively coupled plasma mass spectrometry (ICP-MS). We investigated whether Cu and Pb accumulation differs according to different spider species, single versus combined metal exposure, and routes of exposure. Spiders were exposed to 10 mM CuSO4 and 10 mM PbCl2 solutions separately or in combination (10 mM + 10 mM) through different exposure routes (spiked soil and food) for 6 weeks. The effect of metals on the survival and body mass of exposed and unexposed (control) spiders was determined. We found that in both spider species, accumulation of metals increased with exposure time. In single metal exposure, Cu accumulation from food was higher than soil exposure in both spider species, whereas the opposite was observed for Pb. The simultaneous uptake of Cu and Pb significantly decreased from food and soil, respectively. Soil exposure caused more accumulation of metals in L. terrestris than P. birmanica. Metal exposure via contaminated food caused higher mortality compared to soil exposure. Body mass of both spider species was significantly decreased and negatively correlated with metal’s concentration. Overall, our results show that bioaccumulation efficiency of Cu and Pb differs significantly in spiders exposed to metal’s mixture compared to single metal exposure and is dependent on the exposure route, the type of metal, and spider species. More understanding of the effects of exposure to metal mixture and exposure routes is essential for designing and supporting risk assessment and ecological monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad K, Ashfaq A, Khan ZI, Bashir H, Sohail M, Mehmood N, Dogan Y (2018) Metal accumulation in Raphanus sativus and Brassica rapa: an assessment of potential health risk for inhabitants in Punjab, Pakistan. Environ Sci Pollut R 25:16676–16685

    Article  CAS  Google Scholar 

  • Amalin DM, Pena JE, Reiskind J, McSorley R (2001) Comparison of the survival of three species of sac spiders on natural and artificial diets. J Arachnol 29:253–262

    Article  Google Scholar 

  • Babczynska A, Wilczek G, Szulinska E, Franiel I (2011a) Quantitative immunodetection of metallothioneins in relation to metals concentration in spiders from variously polluted areas. Ecotoxicol Environ Saf 74:1498–1503

    Article  CAS  Google Scholar 

  • Babczynska A, Wilczek G, Wilczek P, Szulinska E, Witas I (2011b) Metallothioneins and energy budget indices in cadmium and copper exposed spiders Agelena labyrinthica in relation to their developmental stage, gender and origin. Comp Biochem Physiol C Toxicol Pharmacol 154:161–171

    Article  CAS  Google Scholar 

  • Bednarek A, Sawadro M, Babczynska A (2016) Modulation of the response to stress factors of Xerolycosa nemoralis (Lycosidae) spiders living in contaminated environments. Ecotoxicol Environ Saf 131:1–6

    Article  CAS  Google Scholar 

  • Bednarska AJ, Opyd M, Zurawicz E, Laskowski R (2015) Regulation of body metal concentrations: toxicokinetics of cadmium and zinc in crickets. Ecotoxicol Environ Saf 119:9–14

    Article  CAS  Google Scholar 

  • Chen H, Mu L, Cao J, Mu J, Klerks PL, Luo Y, Guo Z, Xie L (2016) Accumulation and effects of Cr (VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures. Aquat Toxicol 176:208–216

    Article  CAS  Google Scholar 

  • Chen XQ, Zhang ZT, Liu R, Zhang XL, Chen J, Peng Y (2011) Effects of the metals lead and zinc on the growth, development, and reproduction of Pardosa astrigera (Araneae: Lycosidae). Bull Environ Contam Toxicol 86:203–207

    Article  CAS  Google Scholar 

  • Chiroma TM, Abdulkarim BI, Kefas HM (2007) The impact of pesticide application on heavy metal (cd, Pb and cu) levels in spinach. Leonardo El J Pract Technol 11:117–122

    Google Scholar 

  • Cooper NL, Bidwell JR, Kumar A (2009) Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol Environ Saf 72:1523–1528

    Article  CAS  Google Scholar 

  • Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, London, pp 245–280

    Google Scholar 

  • Dallinger R, Rainbow PS (1993) Ecotoxicology of metals in invertebrates. Lewis Publishers

  • Eraly D, Hendrickx F, Backeljau T, Bervoets L, Lens L (2011) Direct and indirect effects of metal stress on physiology and life history variation in field populations of a lycosid spider. Ecotoxicol Environ Saf 74:1489–1497

    Article  CAS  Google Scholar 

  • Flouty R, Estephane G (2012) Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J Environ Manag 111:106–114

    Article  CAS  Google Scholar 

  • Flouty R, Khalaf G (2015) Role of cu and Pb on Ni bioaccumulation by Chlamydomonas reinhardtii: validation of the biotic ligand model in binary metal mixtures. Ecotoxicol Environ Saf 113:79–86

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow Johnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88:1929–1938

    Article  CAS  Google Scholar 

  • Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G, Bouige D, Lacroix C (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Forensic Sci 153:39–44

    Article  CAS  Google Scholar 

  • Hendrickx F, Maelfait JP, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecol 134:189–194

    Article  Google Scholar 

  • Holmstrup M, Petersen BF, Larsen MM (1998) Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons. Environ Toxicol Chem 17:897–901

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London

    Google Scholar 

  • Huang D, Kong J, Seng Y (2012) Effects of the heavy metal Cu2+ on growth, development, and population dynamics of Spodoptera litura (Lepidoptera: Noctuidae). J Econ Entomol 105:288–294

    Article  CAS  Google Scholar 

  • Iqbal M, Khera RA (2015) Adsorption of copper and lead in single and binary metal system onto Fumaria indica biomass. Chem Int 1:157b–163b

    CAS  Google Scholar 

  • ISO (2008) Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO 17402:2008. International Organization for Standardization, Geneva

  • Jamal Q, Durani P, Khan K, Munir S, Hussain S, Munir K, Anees M (2013) Heavy metals accumulation and their toxic effects: review. JBMS 1:27–36

    Google Scholar 

  • Joy EJ, Broadley MR, Young SD, Black CR, Chilimba AD, Ander EL, Barlow TS, Watts MJ (2015) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595

    Article  CAS  Google Scholar 

  • Jung CS, Lee SB, Jung MP, Lee JH, Lee S, Lee SH (2005) Accumulated heavy metal content in wolf spider, Pardosa astrigera (Araneae: Lycosidae), as a bioindicator of exposure. J Asia Pac Entomol 8:185–192

    Article  CAS  Google Scholar 

  • Jung M, Kim H, Kim ST, Lee JH (2007) Risk analysis of heavy metal contaminated habitats using a wolf spider, Pardosa astrigera (Araneae: Lycosidae). In: C A Brebbia (Ed) Environ Health Risk IV, WIT, Southampton pp 229–236

  • Kammenga J, Arts M, Doroszuk A (2000) Multi-generation effects at the population level: fitness maximisation and optimal allocation in a nematode. In: Kammenga J, Laskowski R (eds) Demography in ecotoxicology. John Wiley, New York, pp 164–177

    Google Scholar 

  • Komjarova I, Blust R (2008) Multi-metal interactions between cd, cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment. Aquat Toxicol 90:138–144

    Article  CAS  Google Scholar 

  • Koster M, Reijnders L, van Oost NR, Peijnenburg WJ (2005) Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environ Pollut 133:103–116

    Article  CAS  Google Scholar 

  • Kovats N, Abdel Hameid NA, Kovacs K, Paulovits G (2010) Sensitivity of three unionid glochidia to elevated levels of copper, zinc and lead. Knowl Manag Aquat Ecosyst 4:1–8

    Google Scholar 

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Li CC, Wang Y, Li GY, Yun YL, Dai YJ, Chen J, Peng Y (2016) Transcriptome profiling analysis of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) after cadmium exposure. Int J Mol Sci 17:2033

    Article  CAS  Google Scholar 

  • Liu J, Gao J, Yun Y, Hu Z, Peng Y (2013) Bioaccumulation of mercury and its effects on survival, development and web-weaving in the funnel-web spider Agelena labyrinthica (Araneae: Agelenidae). Bull Environ Contam Toxicol 90:558–562

    Article  CAS  Google Scholar 

  • Mleiki A, Irizar A, Zaldibar B, El Menif NT, Marigómez I (2016) Bioaccumulation and tissue distribution of Pb and cd and growth effects in the green garden snail, Cantareus apertus (born, 1778), after dietary exposure to the metals alone and in combination. Sci Total Environ 547:148–156

    Article  CAS  Google Scholar 

  • Pavlaki MD, Morgado RG, Soares AM, Calado R, Loureiro S (2018) Toxicokinetics of cadmium in Palaemon varians postlarvae under waterborne and/or dietary exposure. Environ Toxicol Chem 37:1614–1622

    Article  CAS  Google Scholar 

  • Pedersen MB, van Gestel CA, Elmegaard N (2000) Effects of copper on reproduction of two collembolan species exposed through soil, food, and water. Environ Toxicol Chem 19:2579–2588

    Article  CAS  Google Scholar 

  • Peterson EK, Wilson DT, Possidente B, McDaniel P, Morley EJ, Possidente D, Hollocher KT, Ruden DM, Hirsch HV (2017) Accumulation, elimination, sequestration, and genetic variation of lead (Pb2+) loads within and between generations of Drosophila melanogaster. Chemosphere 181:368–375

    Article  CAS  Google Scholar 

  • Ramirez MG, McCallum JE, Landry JM, Vallin VA, Fukui SA, Gergus HE, Torres JD, Sy CL (2011) Relationships between physiological characteristics and trace metal body burdens of banded garden spiders Argiope trifasciata (Araneae, Araneidae). Ecotoxicol Environ Saf 74:1081–1088

    Article  CAS  Google Scholar 

  • Rogers JT, Patel M, Gilmour KM, Wood CM (2005) Mechanisms behind Pb-induced disruption of Na+ and cl− balance in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 289:463–472

    Article  CAS  Google Scholar 

  • Rouchon AM, Phillips NE (2017) Acute toxicity of copper, lead, zinc and their mixtures on the sea urchin Evechinus chloroticus. New Zeal J Mar Fresh 51:333–355

    Article  CAS  Google Scholar 

  • Saxe JK, Impellitteri CA, Peijnenburg WJ, Allen HE (2001) Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environ Sci Technol 35:4522–4529

    Article  CAS  Google Scholar 

  • Shulman MV, Pakhomov OY, Brygadyrenko VV (2017) Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecol 44:28–37

    Article  Google Scholar 

  • Simon E, Harangi S, Feherne Baranyai E, Braun M, Fabian I, Mizser S, Nagy L, Tothmeresz B (2016) Distribution of toxic elements between biotic and abiotic components of terrestrial ecosystem along an urbanization gradient: soil, leaf litter and ground beetles. Ecol Indic 60:258–264

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  CAS  Google Scholar 

  • Tahir HM, Butt A (2008) Activities of spiders in rice fields of Central Punjab, Pakistan. Acta Zool Sin 54:701–711

    Google Scholar 

  • Van Ginneken M, De Jonge M, Bervoets L, Blust R (2015) Uptake and toxicity of cd, cu and Pb mixtures in the isopod Asellus aquaticus from waterborne exposure. Sci Total Environ 537:170–179

    Article  CAS  Google Scholar 

  • Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory. Ghent, Belgium: University of Ghent, pp 243

  • Vasak M (1991) Metal removal and substitution in vertebrate and invertebrate metallothioneins, Methods in enzymology. Elsevier, pp 452–458

  • Vijver MG, Vink JP, Jager T, Van Straalen NM, Wolterbeek HT, Van Gestel CA (2006) Kinetics of Zn and cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biol Biochem 38:1554–1563

    Article  CAS  Google Scholar 

  • Vijver MG, Vink JP, Miermans CJ, van Gestel CA (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35:125–132

    Article  CAS  Google Scholar 

  • Walters DM, Mills MA, Fritz KM, Raikow DF (2009) Spider-mediated flux of PCBs from contaminated sediments to terrestrial ecosystems and potential risks to arachnivorous birds. Environ Sci Technol 44:2849–2856

    Article  CAS  Google Scholar 

  • Wijayawardena MA, Megharaj M, Naidu R, Stojanovski E (2018) Chronic and reproductive toxicity of cadmium, zinc, and lead in binary and tertiary mixtures to the earthworm (Eisenia fetida). J Soils Sediments 18:1602–1609

    Article  CAS  Google Scholar 

  • Wilczek G (2017) The use of spiders in the assessment of cellular effects of environmental stressors. In: Ecotoxicology and genotoxicology: non-traditional terrestrial models. Issues in Toxicology, Royal Society of Chemistry, pp. 96–124

  • Wilczek G, Babczynska A, Augustyniak M, Migula P (2004) Relations between metals (Zn, Pb, cd and cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ Pollut 132:453–461

    Article  CAS  Google Scholar 

  • Wilczek G, Babczynska A, Wilczek P, Dolezych B, Migula P, Mlynska H (2008) Cellular stress reactions assessed by gender and species in spiders from areas variously polluted with heavy metals. Ecotoxicol Environ Saf 70:127–137

    Article  CAS  Google Scholar 

  • Wilczek G, Rost Roszkowska M, Wilczek P, Babczyńska A, Szulinska E, Sonakowska L, Marek Swedziol M (2014) Apoptotic and necrotic changes in the midgut glands of the wolf spider Xerolycosa nemoralis (Lycosidae) in response to starvation and dimethoate exposure. Ecotoxicol Environ Saf 101:157–167

    Article  CAS  Google Scholar 

  • Wilczek G, Wisniewska K, Kozina B, Wilczek P, Rost-Roszkowska M, Stalmach M, Skowronek M, Kaszuba F (2018) Effects of food contaminated with cadmium and copper on hemocytes of Steatoda grossa (Araneae: Theridiidae). Ecotoxicol Environ Saf 149:267–274

    Article  CAS  Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  CAS  Google Scholar 

  • Xu X, Li Y, Wang Y, Wang Y (2011) Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol in Vitro 25:294–300

    Article  CAS  Google Scholar 

  • Yang H, Peng Y, Tian J, Wang J, Hu J, Wang Z (2016) Spiders as excellent experimental models for investigation of heavy metal impacts on the environment: a review. Environ Earth Sci 75:1059

    Article  Google Scholar 

  • Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA (2016) ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol C Toxicol Pharmacol 185:1–12

    Article  CAS  Google Scholar 

  • Zhang L, Van Gestel CA (2017) Toxicokinetics and toxicodynamics of lead in the soil invertebrate Enchytraeus crypticus. Environ Pollut 225:534–541

    Article  CAS  Google Scholar 

  • Zidar P, Van Gestel CA, Strus J (2009) Single and joint effects of Zn and cd on Porcellio scaber (Crustacea, Isopoda) exposed to artificially contaminated food. Ecotoxicol Environ Saf 72:2075–2082

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abida Butt.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, N., Butt, A. & Elsheikha, H.M. Assessment of bioaccumulation of cu and Pb in experimentally exposed spiders, Lycosa terrestris and Pardosa birmanica, using different exposure routes. Environ Sci Pollut Res 27, 3309–3319 (2020). https://doi.org/10.1007/s11356-019-07055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07055-0

Keywords

Navigation