Advertisement

Prosulfocarb at center stage!

  • Damien A. DevaultEmail author
  • Jean-Philippe Guillemin
  • Maurice Millet
  • Franck Eymery
  • Marion Hulin
  • Mathilde Merlo
Pesticides Measurement and Risk Assessment for Human Health and Natural Environment
  • 36 Downloads

Abstract

Prosulfocarb is a thiocarbamate herbicide that is rapidly growing in use due to the progressive bioresistance of weeds to certain pesticides and the ban and/or limitation of others. However, the use of prosulfocarb is only recent, and the relevant literature is scarce. The environmental and food impact of prosulfocarb has already been observed, and its transfer mode from targeted crops to untargeted parcels has been investigated. This expertise highlights the volatilization effect to explain the pollution of lone parcels and hedge inefficiency against residue spreads.

Keywords

Prosulfocarb Apple Cress Cresspool Atmospheric pollution Transfer Volatilisation 

Notes

Acknowledgments

The authors acknowledge Victoria Grace (ENGLISH Publications) for her constructive revisions and the English style.

References

  1. Adriaanse PI, Boesten JJ, Crum SJ (2013) Estimating degradation rates in outdoor stagnant water by inverse modelling with TOXSWA: a case study with prosulfocarb. Pest Manag Sci 69(6):755–767CrossRefGoogle Scholar
  2. Ali S, Honermeier B (2013) Can herbicide stress in artichoke (Cynara cardunculus) be detected by chlorophyll fluorescence? Intern J Agric Biol 15(6):1295–1300Google Scholar
  3. Arts GH, Buijse-Bogdan LL, Belgers JD, van Rhenen-Kersten CH, van Wijngaarden RP, Roessink I, Maund SJ, van den Brink PJ, Brockt TC (2006) Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes. Integrated Environ Asses Manag 2(2):105–125CrossRefGoogle Scholar
  4. Bailly GC, Dale RP, Archer SA, Wright DJ, Kaundun SS (2012) Role of residual herbicides for the management of multiple herbicide resistance to ACCase and ALS inhibitors in a black-grass population. Crop Prot 34:96–103CrossRefGoogle Scholar
  5. Bernhardt A, Ruck W (2004) Determination of herbicides in stemflow and throughfall of beeches (Fagus sylvatica L.) and in rainfall. Chemosphere 57(10):1563–1570CrossRefGoogle Scholar
  6. Bonin L, Gautellier-Vizioz L (2018) Le désherbage d’automne, une étape incontournable. Arvalis Infos.fr (http://p4tre.emv3.com/HM?b=QY2h5GS97n68RLn8eVFxBey_KoM8B3Snm57_JZljveetbZ3qknNOE9UvAJBdLmUv&c = e8uIS1h3v8gzpJ6yDIEG9g)
  7. Busi R, Powles SB (2013) Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant Lolium rigidum. Pest Manag Sci 69(12):1379–1384CrossRefGoogle Scholar
  8. Carlsen SCK, Spliid NH, Svensmark B (2006a) Drift of 10 herbicides after tractor spray application. 1. Secondary drift (evaporation). Chemosphere 64(5):787–794CrossRefGoogle Scholar
  9. Carlsen SCK, Spliid NH, Svensmark B (2006b) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64(5):778–786CrossRefGoogle Scholar
  10. Chambres D’Agriculture Bourgogne-Franche-Comté (2018) Guide Cultures 2018-2019. Partie 1 : Raisonner ses interventions d’automne. 185 ppGoogle Scholar
  11. Cirujeda A, Taberner A (2010) Chemical control of herbicide-resistant Lolium rigidum Gaud. in north-eastern Spain. Pest Manag Sci 66(12):1380–1388CrossRefGoogle Scholar
  12. Délye C, Jasieniuk M, Le Corre V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29(11):649–658CrossRefGoogle Scholar
  13. Desmet EM, Bulcke R, Maeghe L (2004) Field experiences with recent ALS-inhibitors on herbicide resistant blackgrass (Alopecurus myosuroides Huds.). Comm AgriculAppl Biol Sci 69(3):83–89Google Scholar
  14. Dewitte K, Latré J, Haesaert G (2006) Possibilities of chemical weed control in Lupinus albus and Lupinus luteus-screening of herbicides. Comm AgriculAppl Biol Sci 71(3 Pt A):743–751Google Scholar
  15. Gitsopoulos TK, Damalas CA, Georgoulas I (2014) Herbicide mixtures for control of water smartweed (Polygonum amphibium) and wild buckwheat (Polygonum convolvulus) in potato. Weed Technol 28(2):401–407CrossRefGoogle Scholar
  16. Hjorth M, Mondolot L, Buatois B, Andary C, Rapior S, Kudsk P, Mathiassen SK, Ravn HW (2006b) An easy and rapid method using microscopy to determine herbicide effects in Poaceae weed species. Pest Manag Sci 62(6):515–521CrossRefGoogle Scholar
  17. INERIS (2006) Détermination des pesticides à surveiller dans le compartiment aérien : approche par hiérarchisation. Synthèse du comité de pilotage. N°INERIS-DRC/MECO-CGR-143/2005-AGo 139 ppGoogle Scholar
  18. Jursík M, Soukup J, Holec J, Andr J (2011) Herbicide mode of actions and symptoms of plant injury by herbicides: inhibitors of very long chain fatty acid biosynthesis. Listy Cukrovarnicke a Reparske 127(1):15–19Google Scholar
  19. Keshtkar E, Mathiassen SK, Moss SR, Kudsk P (2015) Resistance profile of herbicide-resistant Alopecurus myosuroides (black-grass) populations in Denmark. Crop Prot 69:83–89CrossRefGoogle Scholar
  20. Lacoste P, Picque E, Delattre J-M (2004) Etude de la contamination des eaux de pluie par les produits phytosanitaires dans la région Nord-P-de-Calais. Eur J Water Qual 5(2):129–151CrossRefGoogle Scholar
  21. Rosenhauer M, Petersen J (2015) Bioassay development for the identification of pre-emergence herbicide resistance in Alopecurus myosuroides (Huds.) Populations. Gesunde Pflanzen 67(3):141–150CrossRefGoogle Scholar
  22. Shergill LS, Fleet B, Preston C, Gill G (2016) Management of ACCase-inhibiting herbicide-resistant smooth Barley (Hordeum glaucum) in field pea with alternative herbicides. Weed Technol 30(2):441–447CrossRefGoogle Scholar
  23. van Dijk HFG, Guicherit R (1999) Atmospheric dispersion of current-use pesticides: a review of the evidence from monitoring studies. Water, Air, and Soil Pollution 115(1–4):21–70CrossRefGoogle Scholar
  24. Vera V, Gauvrit C, Cabanne F (2001) Efficacy and foliar absorption of flupyrsulfuron-methyl and prosulfocarb applied alone or in mixture on Lolium multiflorum and wheat. Agronom 21(1):33–43CrossRefGoogle Scholar
  25. Zand E, Baghestani MA, Soufizadeh S, Eskandari A, PourAzar R, Veysi M, Mousavi K, Barjasteh A (2007) Evaluation of some newly registered herbicides for weed control in wheat (Triticum aestivum L.) in Iran. Crop Prot 26(9):1349–1358CrossRefGoogle Scholar
  26. Zhang W (2018) Global pesticide use: Profile, trend, cost / benefit and more. Proceed Intern Acad Ecology Environ Sci 8(1):1–27Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Damien A. Devault
    • 1
    Email author
  • Jean-Philippe Guillemin
    • 2
  • Maurice Millet
    • 3
    • 4
  • Franck Eymery
    • 5
  • Marion Hulin
    • 5
  • Mathilde Merlo
    • 5
  1. 1.Département des Sciences et TechnologiesCentre Universitaire de Formation et de Recherche de MayotteDembeniFrance
  2. 2.Agroécologie, AgroSup Dijon, INRAUniversité Bourgogne Franche-ComtéDijonFrance
  3. 3.Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES UMR 7515 CNRS), Physico-Chemistry Group of the AtmosphereUniversity of StrasbourgStrasbourgFrance
  4. 4.LTSER FranceUrban Environmental Workshop ZoneStrasbourgFrance
  5. 5.ANSES - Direction de l’évaluation des risquesMaisons-AlfortFrance

Personalised recommendations