Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption

  • 59 Accesses


Crystalline silicotitanate (CST) was synthesized via a sol-gel hydrothermal method using Na2Si2O3·9H2O and TiCl4 as silicon and titanium sources. The effects of pH, silicon concentration, hydrothermal temperature, and time on the CST synthesis were studied at a fixed molar ratio of silicon:titanium (0.98:1). Pure nano-CST crystals were synthesized at pH = 12.5, silicon concentration of 5 g L−1, 170 °C for 7 days. The average CST particle size was < 100 nm, with a Sr2+/Cs+ distribution coefficient up to 1.9 × 106 mL g−1/9.4 × 103 mL g−1 under the optimum conditions. In addition, nano-CST absorbed Sr2+/Cs+ over a wide pH range. The nano-CST also displayed a much faster equilibrium time, 4 h, as compared with previous studies. Furthermore, nano-CST adsorption of Sr2+/Cs+ followed a Langmuir adsorption model and was consistent with pseudo-second-order kinetics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Anthony RG, Dosch RG, Gu D, et al (1994). Use of silicotitanates for removing cesium and strontium from defense waste[J]. Industrial & Engineering Chemistry Research 33(11): 2702-2705. https://doi.org/10.1021/ie00035a020

  2. Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602. https://doi.org/10.1016/j.cej.2018.05.137

  3. Alencar LM, de Oliveira LH, Backes R, Rosa TM, de Oliveira PR, Bezerra da Silva RA, Goncalves Trindade MA (2017) Liquid-liquid extraction coupled to batch injection analysis for electroanalysis of levofloxacin at low concentration level. Electroanalysis 29(11):2559–2564. https://doi.org/10.1002/elan.201700364

  4. Anirudhan TS, Shainy F, Deepa JR (2019) Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: batch adsorption studies. Chem Ecol 35(3):235–255. https://doi.org/10.1080/02757540.2018.1532999

  5. Bu J, Teresa RG, Brown KG, Sanchez F (2019) Adsorption mechanisms of cesium at calcium-silicate-hydrate surfaces using molecular dynamics simulations. J Nucl Mater 515:35–51. https://doi.org/10.1016/j.jnucmat.2018.12.007

  6. Buga C, Hunyadi M, Gacsi Z, Hegedus C, Hakl J, Schmidt U, Ding S-J, Csik A (2019) Calcium silicate layer on titanium fabricated by electrospray deposition. Mater Sci Eng C-Mater Biol Appl 98:401–408. https://doi.org/10.1016/j.msec.2019.01.011

  7. Caceres-Jensen L, Rodriguez-Becerra J, Parra-Rivero J, Escudey M, Barrientos L, Castro-Castillo V (2013) Sorption kinetics of diuron on volcanic ash derived soils. J Hazard Mater 261:602–613. https://doi.org/10.1016/j.jhazmat.2013.07.073

  8. Celestian AJ, Parise JB, Smith RI, Toby BH, Clearfield A (2007) Role of the hydroxyl-water hydrogen-bond network in structural transitions and selectivity toward cesium in Cs-0.38(D1.08H0.54)SiTi2O7 center dot(D0.86H0.14)(2)O crystalline silicotitanate. Inorg Chem 46(4):1081–1089. https://doi.org/10.1021/ic0611387

  9. Celestian AJ, Kubicki JD, Hanson J, Clearfiel A, Parise JB (2008a) ChemInform abstract: the mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. Cheminform 39(49):11689. https://doi.org/10.1002/chin.200849205

  10. Celestian AJ, Kubicki JD, Hanson J, Clearfield A, Parise JB (2008b) The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. J Am Chem Soc 130(35):11689–11694. https://doi.org/10.1021/ja801134a

  11. Celestian AJ, Lively J, Xu W (2019) In situ Cs and H exchange into gaidonnayite and proposed mechanisms of ion diffusion. Inorg Chem 58(3):1919–1928. https://doi.org/10.1021/acs.inorgchem.8b02834

  12. Chen M, Zhang F-S, Zhu J (2010) Effective utilization of waste cathode ray tube glass-crystalline silicotitanate synthesis. J Hazard Mater 182(1-3):45–49. https://doi.org/10.1016/j.jhazmat.2010.05.135

  13. Chen Y, Xu W, Zhu H, Wei D, Wang N, Li M (2018) Comparison of organic matter removals in single-component and bi-component systems using enhanced coagulation and magnetic ion exchange (MIEX) adsorption. Chemosphere 210:672–682. https://doi.org/10.1016/j.chemosphere.2018.07.055

  14. Chen X, Chen T, Li J, Qiu M, Fu K, Cui Z, Fan Y, Drioli E (2019) Ceramic nanofiltration and membrane distillation hybrid membrane processes for the purification and recycling of boric acid from simulative radioactive waste water. J Membr Sci 579:294–301. https://doi.org/10.1016/j.memsci.2019.02.044

  15. Chitra S, Viswanathan S, Rao SVS, Sinha PK (2011) Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes. J Radioanal Nucl Chem 287(3):955–960. https://doi.org/10.1007/s10967-010-0867-z

  16. Chitra S, Sudha R, Kalavathi S, Mani AGS, Rao SVS, Sinha PK (2013) Optimization of Nb-substitution and Cs+/Sr+2 ion exchange in crystalline silicotitanates (CST). J Radioanal Nucl Chem 295(1):607–613. https://doi.org/10.1007/s10967-012-1812-0

  17. Clearfield A, Tripathi A, Medvedev D, Celestian AJ, Parise JB (2006) In situ type study of hydrothermally prepared titanates and silicotitanates. J Mater Sci 41(5):1325–1333. https://doi.org/10.1007/s10853-006-7317-x

  18. Ding S, Zhang L, Li Y, Hou L-A (2019) Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J Hazard Mater 368:292–299. https://doi.org/10.1016/j.jhazmat.2019.01.065

  19. Foo KY, Hameed BH (2013) Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresour Technol 130:696–702. https://doi.org/10.1016/j.biortech.2012.11.146

  20. Ghalami Z, Ghoulipour V, Khanchi A (2019) Highly efficient capturing and adsorption of cesium and strontium ions from aqueous solution by porous organic cage: a combined experimental and theoretical study. Appl Surf Sci 471:726–732. https://doi.org/10.1016/j.apsusc.2018.12.056

  21. Guo Z, Xiong G, Liu L, Li P, Hao L, Cao Y, Tian F (2016) Aerosol-assisted synthesis of hierarchical porous titanosilicate molecular sieve as catalysts for cyclohexene epoxidation. J Porous Mater 23(2):407–413. https://doi.org/10.1007/s10934-015-0094-7

  22. Harada S, Yanagisawa M (2017) Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake. Chemosphere 172:516–524. https://doi.org/10.1016/j.chemosphere.2016.11.139

  23. He G, Li Z, Zhao J, Wang S, Wu H, Guiver MD, Jiang Z (2015) Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv Mater 27(36):5280–5295. https://doi.org/10.1002/adma.201501406

  24. Hu Y, Guo X, Chen C, Wang J (2019) Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer. Appl Microbiol Biotechnol 103(6):2833–2843. https://doi.org/10.1007/s00253-019-09619-z

  25. Jin X, Huang L, Yu S, Ye M, Yuan J, Shen J, Fang WX (2019) Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Sep Purif Technol 209:65–72. https://doi.org/10.1016/j.seppur.2018.07.019

  26. Kancharla S, Sasaki K (2019) Acid tolerant covalently functionalized graphene oxide for the selective extraction of Pd from high-level radioactive liquid wastes. J Mater Chem A 7(9):4561–4573. https://doi.org/10.1039/c8ta09849b

  27. Kim H, Kim M, Kim W, Lee W, Kim S (2018) Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2. J Hazard Mater 357:449–456. https://doi.org/10.1016/j.jhazmat.2018.06.037

  28. Lee U, Choi WN, Kim HR (2019) Radiological impact assessment for workers on treatment of radioactive spent resin from heavy water reactors. J Radiol Prot 39(2):422–442. https://doi.org/10.1088/1361-6498/ab039d

  29. Li N, Zhang L, Chen Y, Ming F et al (2012) Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv Funct Mater 22(4):835–841. https://doi.org/10.1002/adfm.201102272

  30. Li Y, Zou G, Yang S, Wang Z, Chen T, Yu X, Guo Q, He R, Duan T, Zhu W (2019) Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater. Chem Eng J 364:139–145. https://doi.org/10.1016/j.cej.2019.01.169

  31. Mao X, Han FX, Shao X, Guo X, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24. https://doi.org/10.1016/j.ecoenv.2015.11.021

  32. Mu W, Du S, Yu Q, Li X, Wei H, Yang Y, Peng S (2019) Highly efficient removal of radioactive Sr-90 based on sulfonic acid-functionalized alpha-zirconium phosphate nanosheets. Chem Eng J 361:538–546. https://doi.org/10.1016/j.cej.2018.12.110

  33. Park Y, Shin WS, Reddy GS, Shin S-J, Choi S-J (2010) Use of nano crystalline silicotitanate for the removal of Cs, Co and Sr from low-level liquid radioactive waste. J Nanoelectron Optoelectron 5(2):238–242. https://doi.org/10.1166/jno.2010.1101

  34. Poskas P, Kilda R, Simonis A, Jouhara H, Poskas R (2019) Disposal of very low-level radioactive waste: lithuanian case on the approach and long-term safety aspects. Sci Total Environ 667:464–474. https://doi.org/10.1016/j.scitotenv.2019.02.373

  35. Shu J, Liu R, Wu H, LiuZ SX, Tao C (2018) Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng 82:351–359. https://doi.org/10.1016/j.jtice.2017.11.020

  36. Siroux B, Wissocq A, Beaucaire C, Latrille C, Petcut C, Calvaire J, Tabarant M, Benedetti MF, Reiller PE (2018) Adsorption of strontium and caesium onto an Na-illite and Na-illite/Na-smectite mixtures: implementation and application of a multi-site ion-exchange model. Appl Geochem 99:65–74. https://doi.org/10.1016/j.apgeochem.2018.10.024

  37. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304(1):21–28. https://doi.org/10.1016/j.jcis.2006.07.068

  38. Vocciante M, D'Auris ADF, Finocchi A, Tagliabue M, Bellettato M, Ferrucci A, Reverberi AP, Ferro S (2018) Adsorption of ammonium on clinoptilolite in presence of competing cations: investigation on groundwater remediation. J Clean Prod 198:480–487. https://doi.org/10.1016/j.jclepro.2018.07.025

  39. Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Juan D et al (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137(19):6144–6147. https://doi.org/10.1021/jacs.5b02480

  40. Zhang H, Liu C, Chen L, Dai B (2019) Control of ice crystal growth and its effect on porous structure of chitosan cryogels. Chem Eng Sci 201:50–57. https://doi.org/10.1016/j.ces.2019.02.026

  41. Zhao X, Meng Q, Chen G, Wu Z, Sun G, Yu G, Sheng L, Weng H, Lin M (2018) An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution. Chem Eng J 352:133–142. https://doi.org/10.1016/j.cej.2018.06.175

  42. Zheng Z, Anthony RG, Miller JE, et al (1995). Ion exchange of cesium by crystalline silico-titanates[J]. Office of Scientific & Technical Information Technical Reports. https://digital.library.unt.edu/ark:/67531/metadc619850/

Download references


This work was supported by the Postgraduate Innovation Fund Project by Southwest University of Science and Technology (No. 16ycx038), the National Natural Science Foundation of China (21007052), and also the University Students Innovation and Training Program of Sichuan Province (201810619098).

Author information

Correspondence to Mengjun Chen or Zhengxue Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Tito Roberto Cadaval Jr

Electronic supplementary material


(DOCX 375 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Luo, Z., Tan, Q. et al. Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption. Environ Sci Pollut Res 27, 4404–4413 (2020). https://doi.org/10.1007/s11356-019-06907-z

Download citation


  • Crystalline silicotitanate
  • Hydrothermal synthesis
  • Strontium and Cesium
  • Adsorption
  • Thermodynamics
  • Kinetics