Advertisement

Modelling affected regions by the Iberian Quercus disease with proximity diagrams

  • Carmen Calvo-JuradoEmail author
Current trends in Environment, Green Technology and Engineering

Abstract

In this work, we propose a mathematical model to determine the potential propagation areas of the Mediterranean Quercus disease commonly referred to as “seca” (Tuser and Sánchez 2004) in specific areas of Extremadura. Although it is a syndrome of complex etiology caused by the action of the different biotic (insects and fungi) and abiotic factors (temperature, orography, soil, etc.), numerous studies suggest that the soil-borne pathogen cinnamomi represents the main responsible for the decay of the holm and cork oak. However, very little is known about the Phytophthora epidemic distribution patterns and its geographical dependence on other factors that favor its spread. With the aim to clarify this question, in this paper, we will use optimal computational geometry algorithms based on proximity diagrams that allow us to design a pathogen transmission map and to determine its correlation with different causing agents, specially with the presence of standing water or drainage lines water.

Keywords

Phytophthora cinnamomi Proximity diagrams Computational 

Notes

Acknowledgments

This work has been partially supported through Ministerio de Economía y Competitividad [MTM2014-53309-P] of Spain and from the Junta de Extremadura through Research Group Grants [FQM-022]. We also thank the EGTEIC 2018 Conference give me the opportunity to present part of this work.

References

  1. Blanco E (2005) Los bosques ibéricos Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  2. Brasier CM (1992) Oak tree mortality in Iberia. Nature, 360–539Google Scholar
  3. Borgefors G (1994) Applications using distance transformations. In: Arcelli CL, Corella P, di Boja GS (eds) Aspects of visua form processing. World Scientic, SingaporeGoogle Scholar
  4. Borgefors G (1986) Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34:344–371CrossRefGoogle Scholar
  5. Bosque Sendra J (1992) Sistemas de información geográfica. RIALP, MadridGoogle Scholar
  6. Brassel K, Reif D (1979) Procedure to generate Thiessen polygon. Geogr Anal 11:289–303CrossRefGoogle Scholar
  7. Cardillo E, Acedo A, Pérez C (2012) Patrones espaciales del decaimiento de encinas y alcornoques en Extremadura, España. Instituto del Corcho, la Madera y el Carbón (IPROCOR). http://iprocor.gobex.es/wp-content/uploads/2012/12/Patronesespaciales-decamientoespaC3B1ol1.pdf
  8. Chen J, Cui B (1997) Using Voronoi approach of developing topological functions in MapInfo. Journal of Wuhan Technical University of Surveying and Mapping 22:195–200Google Scholar
  9. Cubera E, Moreno G, Solla A (2009) Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4–N content. Soil Till Res  https://doi.org/10.1016/j.still.2008.09.002 CrossRefGoogle Scholar
  10. De Berg M, Van Kreveld M, Overmars M, Schwarzkopf O (1997) Computational geometry, algorithms and applications. Springer, BerlinCrossRefGoogle Scholar
  11. Del Pozo JL (2006) Prospección de la seca en Extremadura. Análisis de los resultados. En Gestión Ambiental y Económica del Ecosistema Dehesa en la Península Ibérica: 131-143. Junta de Extremadura. Consejería de Infraestructura y Desarrollo Tecnológico. MéridaGoogle Scholar
  12. Dunbar DM, Stephens GR (1975) Association of twolined chestnut borer and shoestring fungus with mortality of defoliated oak in Connecticut. For Sci 21:169–174Google Scholar
  13. ESMA SL (2003a) Desarrollo y metodología para la realización de un inventario piloto en zonas afectadas por la Seca de quercíneas. Madrid, p 46Google Scholar
  14. ESMA SL (2003b) Metodología para la prospección y seguimiento de masas de Quercus afectadas por la “Seca” en la provincia de cáceres. Madrid, p 130Google Scholar
  15. ESMA SL (2004) Metodología para la prospección y seguimiento de masas de Quercus afectadas por la “Seca” en la provincia de Badajoz. Madrid, p 102Google Scholar
  16. Fürher E (1998) Oak decline in Central Europe: a sinopsis of hypotheses. In: Mc Manus y M.L., Liebhold A.M. (eds) Proc. population dynamics, impacts and integrated management of forest defoliating insects. USDA Forest Service General Technical Report, pp 1–24Google Scholar
  17. García Rodríguez MP, Sanz Donaire JJ, Pérez González ME, Navarro Madrid A (2012) Guía práctica de teledetección y fotointerpretación. Universidad Complutense de Madrid. http://eprints.sim.ucm.es/17444/1/GUIA_PRACTICA_TELEDETECCION.pdf
  18. Geoportal (2019) Observación Dehesa Montado. visualización de información cartográfica IDE Extremadura. CICYTEX, Junta de Extremadura. http://geoportal.observatoriodehesamontado.gobex.es
  19. Gómez-Aparicio L, Ibanez B, Serrano M, De Vita P, Avila JM, Perez-Ramos J, García LV, Sanchez MA, Maranon T (2012) Spatial patterns of soil pathogens in declining Mediterranean forests: implications for tree species regeneration. New Phytologist 194:1014–1024CrossRefGoogle Scholar
  20. Gottschalk KW, Wargo PM (1996) Oak decline around the world, Proceedings of the U.S. Department of Agriculture Interagency Gypsy Moth Research ForumGoogle Scholar
  21. Gold CM (1991) Problems with handling spatial data the Voronoi approach. CISM Journal 45:65–80CrossRefGoogle Scholar
  22. Gold CM (1994) A review of potential applications of Voronoi methods in geomatics. Proceedings of the Canadian Conference on GIS, 4–10 June, Ottawa, 1647–1656Google Scholar
  23. IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM CorpGoogle Scholar
  24. IDEEX (2019) Infraestructura de datos espaciales de Extremadura. http://www.ideextremadura.com/Geoportal/
  25. Klein R (1988) Abstract voronoi diagrams and their applications. Lecture Notes in Computer Science, vol 333. Springer, BerlinGoogle Scholar
  26. Lee DT, Drysdale RL (1981) Generalization of Voronoi diagram in the plane. SIAM J Comput 10:73–87CrossRefGoogle Scholar
  27. Li C, Chen J, Li Z (1999) A raster-based method for computing Voronoi diagrams of spatial objects using dynamic distance transformation. Int J Geographical Inform Sci 13(3):209–225CrossRefGoogle Scholar
  28. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability. University of California Press, pp 281–297Google Scholar
  29. Manzano MJ, Belvis G, Folgueiras R, Prieto JM (2016a) Comparativa del estado actual de los focos de Seca inventariados entre 2003 y 2004, en masas de Quercus de Extremadura. Cuad Soc Esp Cienc For 43:377–392Google Scholar
  30. Manzano MJ, Belvis G, Folgueiras R, Prieto JM (2016b) Evolución de la densidad arbolada de las masas de Quercus afectadas por seca en Extremadura desde 1957 hasta 2013. For. 66:52–57Google Scholar
  31. Miles RE, Maillardand RJ (1982) The basic structures of Voronoi et generalized Voronoi polygons. J Appl Probab 19A:97–111CrossRefGoogle Scholar
  32. Ministerio de Fomento (2017) Ministerio de Fomento Secretaría de Estado de Infraestructuras, Transporte y Vivienda Dirección General de Arquitectura, Vivienda y Suelo. Documento descriptivo climas de referencia, Versión 2.0 Febrero. https://www.codigotecnico.org/index.php/menu-documentoscte/133-ct-documentos-cte/ahorro-de-energia.html
  33. Moreira AC, Martins JMS (2005) Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. For Pathol 35:145–162CrossRefGoogle Scholar
  34. Preparata FP, Ian Shanmos M (1985) Computational geometry an introduction. Springer, New–YorkCrossRefGoogle Scholar
  35. Rodríguez-Molina MC, Santiago Merino R, Blanco Santos A, Pozo Quintanilla JD, Colino Nevado MI, Palo Núnez EJ, Torres-Vila LM (2003) Detección de Phytophthora cinnamomi en dehesas de Extremadura afectadas por “seca” y su comportamiento in vitro. Bol San Veg Plagas 29:627–640Google Scholar
  36. Rodríguez-Molina MC, Palo E, Blanco A, Torres-Vila LM, Santiago R, Del Pozo J, Colino MI, Torres E, Suárez MA (2012) Phytophthora cinnamomi: un Oomycete implicado en la Seca de encinas y alcornoques. Revista Phytoma 236:36–40Google Scholar
  37. Steinhaus H (1957) Sur la division des corps materiels en parties. Bull Acad Polon Sci 4(12):801–804Google Scholar
  38. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Climate Change and Plant Diseases 60:133–149Google Scholar
  39. Tuser JJ, Sánchez G (2004) La Seca. El decaimiento de encinas, alcornoques y otros Quercus en Espana. Análisis de los resultados Ediciones Mundi Prensa. Madrid, SpainGoogle Scholar
  40. U.S. Department of Agriculture, Forest Service (2015) Sudden Oak Death. Major Forest Insect and Disease Conditions in the United States 2015:15–17Google Scholar
  41. Vivas M, Curbera E, Moreno G, Solla A (2009) The decline of Quercus ilex and Q. suber in the Iberian Peninsula, Agroforestry systems as a technique for sustainable land management, AECID Unicopia ediciones, Madrid, ISBN: 978-84-96351-59-2, 225–233Google Scholar
  42. Wargo MP, Houston DR, LaMadeleine LA (1983) Oak decline. Forest Insect and Disease Leaflet 165. U.S. Department of Agriculture Forest Service. http://www.na.fs.fed.us/spfo/pubs/fidls/oakdecline/oakdecline.htm
  43. Wolfram Research Inc (2016) Mathematica, Versión 10.4, Champaign, ILGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of MathematicsEscuela Politécnica Avda. de la UniversidadCáceresSpain

Personalised recommendations