Advertisement

Study of optimal conditions in semi-continuous anaerobic co-digestion of table olive effluents and pig manure in a perfectly stirred reactor

  • Juan F. GonzálezEmail author
  • Ana I. Parralejo
  • Heidi M. Bolívar
  • Jerónimo González
Research Article
  • 16 Downloads

Abstract

Brines from table olive elaboration were co-digested with pig manure, obtaining high methane productions. In particular, the methane yields obtained for pig manure total solid (TS) initial concentrations of 2%, 7%, 9% (wet basis, wt.) were 106, 213 and 247 mL CH4 gVS-1add, respectively, using mixtures of two types of brine (acid (A) and basic (B)) generated in the elaboration process. Moreover, an experiment with only basic brine was made, using a pig manure TS concentration of 7% wt. In this case, a methane yield of 224 mL CH4 gVS-1add was obtained. The methane production rate was calculated in experiments of 7% pig manure TS concentration and a high kinetic constant of 0.31 d-1 was obtained for the mixture of residual brine. Finally, the effect of Na+ cation concentration was evaluated in the mixture A:B during co-digestion processes with a 7% wt. pig manure TS concentration and inhibition was detected in this process with a [Na+] of 0.56% wt. of the total sample. An energy and economical study on the treatment of these wastewaters by means of anaerobic co-digestion demonstrated a great economic benefit for the producer industry, a reduction in the diesel consumption used to produce its energetic demand and a reduction cost of 3.63 €/m3 generated of A:B brines mixture with ratio 2:1.

Keywords

Wastewater Salt concentration Energy study Total solid Methane production Kinetic 

Notes

Acknowledgements

This research was carried out as a part of the 0450_AGRI_SOS_6_E 0406 and ALTERCEXA II 4 E: Medidas de adaptación y mitigación al cambio climático a través del impulso de las energías renovables en Centro, Extremadura y Alentejo (Fase II). Projects of the Programme for cross-border cooperation between Spain and Portugal 2007–2013. Also, it was finnanced with the Project PCJ1006 (2011-2015) “Planta integrada para la fijación de CO2 en microalgas y su aprovechamiento en un proceso de co-digestión para la generación de energía térmica y eléctrica” included in the Programme “Cooperation Projects in strategic sectors between researcher groups and industries” of Junta of Extremadura (Spain).

References

  1. APHA (1998) American Public Health Association. Standard methods for the examination of water and wastewater, 20th edn. A.P.H. Association, Washington DCGoogle Scholar
  2. Bautista J, Arroyo FN, Romero F, Rodríguez F, García P, Garrido A (2015) Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine. Food Microbiol 49:56–64CrossRefGoogle Scholar
  3. Benekos AK, Zampetaa C, Argyrioua R, Economoua CN, Triantaphyllidoua I-E, Tatoulis TI, Tekerlekopoulou AG, Vayenas DV (2019) Treatment of table olive processing wastewaters using electrocoagulation in laboratory and pilot-scale reactors. Process Saf Environ Prot 131:38–47CrossRefGoogle Scholar
  4. Benítez FJ, Beltran-Heredia J, Torregrosa J, Acero JL, Cercas V (1997) Aerobic degradation of olive mill wastewaters. Appl Microbiol Biotechnol 47:185–188CrossRefGoogle Scholar
  5. Benitez FJ, Acero JL, González T, García J (2001) Organic matter removal from wastewaters of the black olive industry by chemical and biological procedures. Process Biochem 37:257–265CrossRefGoogle Scholar
  6. Brown N, Güttler J, Shilton A (2016) Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renew Energy 96:425–432CrossRefGoogle Scholar
  7. Carbonell C, Alvarez S, Bes MA, Mendoza JA, Pastor L (2018) Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. J Clean Prod 189:662–672CrossRefGoogle Scholar
  8. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  9. Dennehy C, Lawlor PG, Croize T, Jiang Y, Morrison L, Gardiner GE, Zhan X (2016) Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion. Waste Manag 56:173–180CrossRefGoogle Scholar
  10. Dinçer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Process Biochem 36:901–906CrossRefGoogle Scholar
  11. Ergüder TH, Tezel U, Güven E, Demirer GN (2001) Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manag 21:643–650CrossRefGoogle Scholar
  12. Fendri I, Chamkha M, Bouaziz M, Labat M, Sayadi S, Abdelkafi S (2013) Olive fermentation brine: biotechnological potentiabilities and valorization. Environ Technol 34:181–193CrossRefGoogle Scholar
  13. Ferrer E, Mendoza JA, Ibora A, Alonso JL, Pastor L (2015) Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chem Eng J 273:595–602CrossRefGoogle Scholar
  14. Fiore S, Ruffinoo B, Campo G, Roati C, Zanetti MC (2016) Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes. Renew Energy 96:949–959CrossRefGoogle Scholar
  15. Gavala HN, Kopsinis H, Skiadas IV, Stamatelatou K, Lyberatos G (1999) Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. J Agric Eng Res 73:59–63CrossRefGoogle Scholar
  16. Glanpracha N, Annachhatre AP (2016) Anaerobic co-digestion of cyanide containing cassava pulp with pig manure. Bioresour Technol 214:112–121CrossRefGoogle Scholar
  17. Guangyin Z, Xuequin L, Takuro K, Goperlakrishman K, Kaiqin X (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp. Chlorella sp.) and food waste: kinetic modelling and synergetic impact evaluation. Chem Eng J 299:332–341CrossRefGoogle Scholar
  18. Jiménez AM, Borja R, Matín A, Raposo F (2006) Kinetic analysis of the anaerobic digestion of untreat vinasses and vinasses previously treated with Penicilium decumbens. J Environ Manag 80:303–310CrossRefGoogle Scholar
  19. Kargi F, Dincer AR (1996) Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation Fikret. Enzym Microb Technol 19:529–537CrossRefGoogle Scholar
  20. Kiai H, Raiti J, El-Abbassi A, Hafidi A (2018) Recovery of phenolic compounds from table olive processing wastewaters using cloud point extraction method. J Environ Chem Eng 6:1569–1575CrossRefGoogle Scholar
  21. Kotsou M, Kyriakou A, Lasaridi K, Pilidis G (2004) Integrated aerobic biological treatment and chemical oxidation with Fenton’s reagent for the processing of green table olive wastewater. Process Biochem 39:1653–1660CrossRefGoogle Scholar
  22. Li D, Liu S, Hi L, Li Z, Yuan Y, Yan Z, Liu X (2015) Effects of the feedstocks ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour Technol 187:120–127CrossRefGoogle Scholar
  23. Maragkaki AE, Vasileiadis I, Fountoulakis M, Kyriakou A, Lasaridi K, Manios T (2018) Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater, improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Manag 71:644–651CrossRefGoogle Scholar
  24. Marone A, Carmona-Martínez AA, Sire Y, Mardec E, Steyer JP, Bernet N, Trably E (2016) Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds. Water Res 100:316–325CrossRefGoogle Scholar
  25. Maza-Márquez P, González-Martínez A, Martínez-Toledo MV, Fenice M, Lasserrot A, González-López J (2017) Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor. Environ Sci Pollut Res 24:527–538CrossRefGoogle Scholar
  26. Methods for Chemical Analysis of Water and Wastes. EPA 414.4. US (1993) Environmental Protection Agency, Environmental Monitoring and Support LaboratoryGoogle Scholar
  27. Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Spain (2018) El sector porcino en Extremadura, seminario sectorial. Dirección general de explotaciones agrarias y calidad alimentariaGoogle Scholar
  28. Papadaki E, Mantzouridou FT (2016) Current status and future challenges of table olive processing wastewater valorization. Biochem Eng J 112:103–113CrossRefGoogle Scholar
  29. Pekin G, Haskök S, Sargin S, Gezgin Y, Elten R, Ikizoglu E, Azbar N, Vardar F (2010) Anaerobic digestion of Aegean olive mill effluents with and without pretreatment. J Chem Technol Biotechnol 85:976–982CrossRefGoogle Scholar
  30. Picos-Benítez AR, Peralta-Hernández JM, López-Hincapié JD, Rodríguez-García A (2019) Biogas production from saline wastewater of the evisceration process of the fish processing industry. J Water Proc Eng 32:100933CrossRefGoogle Scholar
  31. Plan de Energías Renovables (PER) 2011-2020. Ministerio de Industria, Turismo y Comercio e Instituto para la Diversificación y Ahorro de la Energía (IDAE)Google Scholar
  32. Reid E, Liu X, Judd SJ (2006) Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. J Membr Sci 283:164–171CrossRefGoogle Scholar
  33. Rivas FJ, Beltran FJ, Gimeno O (2000) Joint treatment of wastewater from table olive processing and urban wastewater. Integrated ozonation-aerobic oxidation. Chem Eng Technol 23:177–181CrossRefGoogle Scholar
  34. Rivas FJ, Beltran FJ, Gimero O, Alvarez P (2003) Treatment of brines by combined Fenton’s reagent-aerobic biodegradation. II. Process modeling. J Hazard Mater 96:277–272CrossRefGoogle Scholar
  35. Rodríguez A, Lomas JM (1999) Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass Bioenergy 17:435–443CrossRefGoogle Scholar
  36. Rodríguez-Sánchez A, Leyva-Díaz JC, Muñoz-Palazón B, Poyatos JM, González-López J (2019) Influence of salinity cycles in bioreactor performance and microbial community structure of membrane-based tidal-like variable salinity wastewater treatment systems. Environ Sci Pollut Res 26:514–527CrossRefGoogle Scholar
  37. Sampaio MA, Gonçalves MR, Marques IP (2011) Anaerobic digestion of raw olive mill wastewater. Bioresour Technol 102:10810–10818CrossRefGoogle Scholar
  38. Subsecretaría de Agricultura, Pesca y Alimentación, Subdirección General de Análisis, Coordinación y Estadística (2018) Encuesta sobre Superficies y Rendimientos de Cultivo (ESYRCE), Ministerio de Agricultura. Pesca y Alimentación, Gobierno de EspañaGoogle Scholar
  39. Suwannoppadol S, Ho G, Cad-Ruwich R (2012) Overcoming sodium toxicity by utilizing grass leaves co-sustrate during the start-up of batch thermophilic anaerobic digestion. Bioresour Technol 125:188–192CrossRefGoogle Scholar
  40. Tatoulis T, Stefanakis A, Frontistis Z, Akratos CS, Tekerlekopoulou AG, Mantzavinos D, Vayenas DV (2017) Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation. Environ Sci Pollut Res 24:1085–1092CrossRefGoogle Scholar
  41. Turcios AE, Weichgrebe D, Papenbrock J (2016) Effect of salt and sodium concentration on the anaerobic methanisation of the halophyte Tripolium pannonicum. Biomass Bioenergy 87:69–77CrossRefGoogle Scholar
  42. Xie S, Lawlor PG, Frost JP, Hu Z, Zhan X (2011) Effects of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresour Technol 102:5728–5733CrossRefGoogle Scholar
  43. Xie S, Wu G, Lawlor PG, Frost JP, Zhan X (2012) Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage. Bioresour Technol 104:289–297CrossRefGoogle Scholar
  44. Zarkadas IS, Pilidis GA (2011) Anaerobic co-digestion of table olive debittering & washing effluent, cattle manure and pig manure in batch and high volume laboratory anaerobic digesters: Effect of temperature. Bioresour Technol 102:4995–5003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Juan F. González
    • 1
    Email author
  • Ana I. Parralejo
    • 2
  • Heidi M. Bolívar
    • 2
  • Jerónimo González
    • 2
  1. 1.Departamento de Física Aplicada, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain
  2. 2.Departamento de cultivos extensivos: BiocombustiblesCicytex, Consejería de Empleo, Empresa e Innovación, Junta de Extremadura, Finca La OrdenBadajozSpain

Personalised recommendations