Advertisement

The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean)

  • Ayşegül PalaEmail author
Research Article

Abstract

This study had determined the effect of glyphosate-based herbicide (GBH) on acetylcholinesterase (AChE) enzyme activity, oxidative stress, and antioxidant status in Gammarus pulex. Firstly, the 96-h LC50 value of glyphosate on G. pulex was determined and calculated as 403 μg/L. Subsequently, the organisms were exposed to sub-lethal concentrations (10, 20, and 40 μg/L) of the determined GHB for 24 and 96 h. The samples were taken from control and GBH-treated groups at 24 and 96 h of study and analysed to determine the malondialdehyde (MDA) and reduced glutathione (GSH) levels, the AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. In the G. pulex exposed to GBH for 24 and 96 h, the MDA level increased significantly (p < 0.05). The GSH level, the AChE, the CAT, and the GPx activities decreased compared with the control group (p < 0.05). G. pulex exposure to GBH for 24 h showed a temporary reduction in the SOD. GBH exposure led to oxidative stress in the G. pulex as well as affected the cholinergic system of the organism. These results indicated that the parameters measured may be important indicators of herbicide contamination in G. pulex.

Keywords

Pesticides Glyphosate Invertebrate Gammarus pulex Biomarkers 

Notes

References

  1. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):141–147Google Scholar
  2. Adam O, Badot PM, Degiorgi F, Crini G (2009) Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.). Ecotoxicol Environ Saf 72(2):441–449.  https://doi.org/10.1016/j.ecoenv.2008.07.017 CrossRefGoogle Scholar
  3. Aebi H (1984) Methods in enzymology. Catalase In Vitro 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 CrossRefGoogle Scholar
  4. Al-Fanharawi AA, Rabee AM, Al-Mamoori AM (2018) Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Hum Ecol Risk Assess:1–20.  https://doi.org/10.1080/10807039.2018.1460800
  5. Amitai G, Moorad D, Adani R, Doctor BP (1998) Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem Pharmacol 56(3):293–299.  https://doi.org/10.1016/S0006-2952(98)00035-5 CrossRefGoogle Scholar
  6. Avigliano L, Fassiano AV, Medesani DA, De Molina MR, Rodríguez EM (2014) Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bull Environ Contam Toxicol 92(6):631–635.  https://doi.org/10.1007/s00128-014-1240-7 CrossRefGoogle Scholar
  7. Ayanda OI (2018) Toxicity of sublethal concentrations of glyphosate and paraquat herbicide in the African catfish (Clarias gariepinus). Int J Agric Biol.  https://doi.org/10.17957/IJAB/15.0642
  8. Battaglin WA, Kolpin DW, Scribner EA, Kuivila KM, Sandstrom MW (2005) Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002. J Am Water Resour Assoc 41(2):323–332.  https://doi.org/10.1111/j.1752-1688.2005.tb03738.x CrossRefGoogle Scholar
  9. Battaglin WA, Rice KC, Focazio MJ, Salmons S, Barry RX (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006. Environ Monit Assess 155(1-4):281–307.  https://doi.org/10.1007/s10661-008-0435-y CrossRefGoogle Scholar
  10. Bertin D, Labadie P, Ferrari BJ, Sapin A, Garric J, Geffard O, Budzinski H, Babut M (2016) Potential exposure routes and accumulation kinetics for poly-and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp.(Crustacea). Chemosphere 155:380–387.  https://doi.org/10.1016/j.chemosphere.2016.04.006 CrossRefGoogle Scholar
  11. Beutler E (1975) Red cell metabolism: a manual of biochemical methods. Grune & StrattonGoogle Scholar
  12. Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L (1974) Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J 139(1):43–48CrossRefGoogle Scholar
  13. Cattaneo R, Clasen B, Loro VL, de Menezes CC, Pretto A, Baldisserotto B, de Avila LA (2011) Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 87(6):597–602CrossRefGoogle Scholar
  14. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2011) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68(1):16–30.  https://doi.org/10.1002/ps.2212 CrossRefGoogle Scholar
  15. de Melo Tarouco F, de Godoi FGA, Velasques RR, da Silveira Guerreiro A, Geihs MA, da Rosa CE (2017) Effects of the herbicide Roundup on the polychaeta Laeonereis acuta: cholinesterases and oxidative stress. Ecotoxicol Environ Saf 135:259–266.  https://doi.org/10.1016/j.ecoenv.2016.10.014 CrossRefGoogle Scholar
  16. Demirci Ö, Güven K, Asma D, Öğüt S, Uğurlu P (2018) Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicol Environ Saf 147:749–758.  https://doi.org/10.1016/j.ecoenv.2017.09.038 CrossRefGoogle Scholar
  17. Domingues I, Agra AR, Monaghan K, Soares AM, Nogueira AJ (2010) Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination. Environ Toxicol Chem 29(1):5–18CrossRefGoogle Scholar
  18. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95.  https://doi.org/10.1152/physrev.00018.2001 CrossRefGoogle Scholar
  19. El-Gendy KS, Aly NM, Mahmoud FH, Kenawy A, El-Sebae AKH (2010) The role of vitamin C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem Toxicol 48(1):215–221.  https://doi.org/10.1016/j.fct.2009.10.003 CrossRefGoogle Scholar
  20. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77CrossRefGoogle Scholar
  21. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  22. Ferreira D, da Motta AC, Kreutz LC, Toni C, Loro VL, Barcellos LJG (2010) Assessment of oxidative stress in exposed to agrichemicals. Chemosphere 79(9):914–921.  https://doi.org/10.1016/j.chemosphere.2010.03.024 CrossRefGoogle Scholar
  23. Filizadeh Y, Rajabi Islami H (2011) Toxicity determination of three sturgeon species exposed to glyphosate. Iran J Fish Sci 10(3):383–392Google Scholar
  24. Gholami-Seyedkolaei SJ, Mirvaghefi A, Farahmand H, Kosari AA (2013) Effect of a glyphosate-based herbicide in Cyprinus carpio: assessment of acetylcholinesterase activity, hematological responses and serum biochemical parameters. Ecotoxicol Environ Saf 98:135–141.  https://doi.org/10.1016/j.ecoenv.2013.09.011 CrossRefGoogle Scholar
  25. Gismondi E, Beisel JN, Cossu-Leguille C (2012) Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli. Environ Res 118:47–52.  https://doi.org/10.1016/j.envres.2012.06.004 CrossRefGoogle Scholar
  26. Gismondi E, Cossu-Leguille C, Beisel JN (2013) Do male and female gammarids defend themselves differently during chemical stress? Aquat Toxicol 140:432–438.  https://doi.org/10.1016/j.aquatox.2013.07.006 CrossRefGoogle Scholar
  27. Glusczak L, dos Santos Miron D, Crestani M, da Fonseca MB, de Araújo Pedron F, Duarte MF, Vieira VLP (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65(2):237–241.  https://doi.org/10.1016/j.ecoenv.2005.07.017 CrossRefGoogle Scholar
  28. Glusczak L, dos Santos Miron D, Moraes BS, Simões RR, Schetinger MRC, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol C Toxicol Pharmacol 146(4):519–524.  https://doi.org/10.1016/j.cbpc.2007.06.004 CrossRefGoogle Scholar
  29. Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52(8):253–265.  https://doi.org/10.1111/j.1753-4887.1994.tb01453.x CrossRefGoogle Scholar
  30. Hong Y, Yang X, Yan G, Huang Y, Zuo F, Shen Y, Cheng Y (2017) Effects of glyphosate on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 71:19–27.  https://doi.org/10.1016/j.fsi.2017.09.062 CrossRefGoogle Scholar
  31. Hong Y, Yang X, Huang Y, Yan G, Cheng Y (2018) Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere 210:896–906.  https://doi.org/10.1016/j.chemosphere.2018.07.069 CrossRefGoogle Scholar
  32. Humphries D, Anderson AM, Byrtus G (2005) Glyphosate residues in Alberta’s atmospheric deposition, soils and surface waters. Alberta Environment, Water Research Users GroupGoogle Scholar
  33. Hyne RV, Maher WA (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicol Environ Saf 54(3):366–374.  https://doi.org/10.1016/S0147-6513(02)00119-7 CrossRefGoogle Scholar
  34. Iummato MM, Di Fiori E, Sabatini SE, Cacciatore LC, Cochón AC, de Molina MDCR, Juárez ÁB (2013) Evaluation of biochemical markers in the golden mussel Limnoperna fortunei exposed to glyphosate acid in outdoor microcosms. Ecotoxicol Environ Saf 95:123–129.  https://doi.org/10.1016/j.ecoenv.2013.05.024 CrossRefGoogle Scholar
  35. Kaya İ, Karapehlivan M, Yilmaz M, Ersan Y, Koç E (2012) Investigation of effects on plasma nitric oxide, malondialdehyde and total sialic acid levels of glyphosate in Kars creek transcaucasian barb (Capoeta capoeta [Guldenstaedt, 1773]) in Turkey. Fresenius Environ Bull 21(1A):123–126Google Scholar
  36. Kelly KA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106(7):375–384.  https://doi.org/10.1289/ehp.98106375 CrossRefGoogle Scholar
  37. Liu L, Zhu B, Gong YX, Liu GL, Wang GX (2015) Neurotoxic effect of triazophos on goldfish (Carassius auratus) and tissue specific antioxidant responses. Ecotoxicol Environ Saf 116:68–75.  https://doi.org/10.1016/j.ecoenv.2015.03.001 CrossRefGoogle Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  39. Lushchak V, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76(7):932–937.  https://doi.org/10.1016/j.chemosphere.2009.04.045 CrossRefGoogle Scholar
  40. Mahler BJ, Van Metre PC, Burley TE, Loftin KA, Meyer MT, Nowell LH (2017) Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Sci Total Environ 579:149–158.  https://doi.org/10.1016/j.scitotenv.2016.10.236 CrossRefGoogle Scholar
  41. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208Google Scholar
  42. Menéndez-Helman RJ, Ferreyroa GV, dos Santos Afonso M, Salibián A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88(1):6–9.  https://doi.org/10.1007/s00128-011-0423-8 CrossRefGoogle Scholar
  43. Mensah PK, Palmer CG, Muller WJ (2012) Lipid peroxidation in the freshwater shrimp Caridina nilotica as a biomarker of Roundup® herbicide pollution of freshwater systems in South Africa. Water Sci Technol 65(9):1660–1666.  https://doi.org/10.2166/wst.2012.060 CrossRefGoogle Scholar
  44. Mişe Yonar S (2013) Toxic effects of malathion in carp, Cyprinus carpio carpio: protective role of lycopene. Ecotoxicol Environ Saf 97:223–229.  https://doi.org/10.1016/j.ecoenv.2013.07.020 CrossRefGoogle Scholar
  45. Mişe SY, Yonar ME, Ural MŞ (2017) Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cell Mol Biol (Noisy-le-Grand, France) 63(3):68–72.  https://doi.org/10.14715/cmb/2017.63.3.13 CrossRefGoogle Scholar
  46. Modesto KA, Martinez CB (2010) Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81(6):781–787.  https://doi.org/10.1016/j.chemosphere.2010.07.005 CrossRefGoogle Scholar
  47. OECD (2004) Daphnia sp., acute immobilisation test, OECD Guidelines for Testing of Chemicals, No. 202, OECD, ParisGoogle Scholar
  48. Oruç EÖ, Üner N (1999) Effects of 2, 4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environ Pollut 105(2):267–272.  https://doi.org/10.1016/S0269-7491(98)00206-1 CrossRefGoogle Scholar
  49. Pala A, Şeker E, & Yonar ME (2018). Effect of Tunceli garlic on some immunological parameters in Cyprinus carpio exposed to chlorpyrifos. Cellular and molecular biology, 64(4), 108–112Google Scholar
  50. Peña-Llopis S, Ferrando MD, Peña JB (2003) Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat Toxicol 65(4):337–360CrossRefGoogle Scholar
  51. Pérez GL, Vera MS, Miranda L (2011) Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. In: Herbicides and environment. InTechGoogle Scholar
  52. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364.  https://doi.org/10.1016/0003-2697(66)90167-9 CrossRefGoogle Scholar
  53. Rinderhagen M, Ritterhoff J, Zauke GP (2000) Crustaceans as bioindicators. In Biomonitoring of polluted water-reviews on actual topics. Trans Tech Publications-Scitech Publications, Environmental Research Forum, Vol 9, pp 161-194Google Scholar
  54. Rosenbom AE, Brüsch WM, Juhler RK, Ernstsen V, Gudmundsson L, Kjær J, Olsen P (2010) The Danish Pesticide Leaching Assessment Programme: monitoring results May 1999-June 2009. Danmarks og Grønlands Geologiske UndersøgelseGoogle Scholar
  55. Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Evaluation of metabolic enzymes in response to Excel Mera 71, a glyphosate-based herbicide, and recovery pattern in freshwater teleostean fishes. BioMed Res Int 2014.  https://doi.org/10.1155/2014/425159
  56. Sandrini JZ, Rola RC, Lopes FM, Buffon HF, Freitas MM, Martins CDMG, da Rosa CE (2013) Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: in vitro studies. Aquat Toxicol 130:171–173.  https://doi.org/10.1016/j.aquatox.2013.01.006 CrossRefGoogle Scholar
  57. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014.  https://doi.org/10.1590/S0100-879X2005000700003 CrossRefGoogle Scholar
  58. Serdar O (2019) The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environ Sci Pollut Res 26:1–10.  https://doi.org/10.1007/s11356-019-04629-w CrossRefGoogle Scholar
  59. Serdar O, Yildirim NC, Tatar S, Yildirim N, Ogedey A (2018) Antioxidant biomarkers in Gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment. Environ Sci Pollut Res 25:1–7.  https://doi.org/10.1007/s11356-018-1491-7 CrossRefGoogle Scholar
  60. Sinhorin VDG, Sinhorin AP, dos Santos Teixeira JM, Miléski KML, Hansen PC, Moreira PSA et al (2014) Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol Environ Saf 106:181–187.  https://doi.org/10.1016/j.ecoenv.2014.04.040 CrossRefGoogle Scholar
  61. Sobjak TM, Romão S, do Nascimento CZ, dos Santos AFP, Vogel L, Guimarães ATB (2017) Assessment of the oxidative and neurotoxic effects of glyphosate pesticide on the larvae of Rhamdia quelen fish. Chemosphere 182:267–275.  https://doi.org/10.1016/j.chemosphere.2017.05.031 CrossRefGoogle Scholar
  62. Sroda S, Cossu-Leguille C (2011) Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli. Chemosphere 83(4):538–544.  https://doi.org/10.1016/j.chemosphere.2010.12.023 CrossRefGoogle Scholar
  63. Stara A, Machova J, Velisek J (2012) Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 33(2):334–343.  https://doi.org/10.1016/j.etap.2011.12.019 CrossRefGoogle Scholar
  64. Tatar S, Cikcikoglu Yildirim N, Serdar O, Yildirim N, Ogedey A (2018) The using of Gammarus pulex as a biomonitor in ecological risk assessment of secondary effluent from municipal wastewater treatment plant in Tunceli, Turkey. Hum Ecol Risk Assess 24(3):819–829.  https://doi.org/10.1080/10807039.2017.1400374 CrossRefGoogle Scholar
  65. Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8(5):369–384CrossRefGoogle Scholar
  66. Topal A, Atamanalp M, Uçar A, Oruç E, Kocaman EM, Sulukan E, Akdemir F, Beydemir Ş, Kılınç N, Erdoğan O, Ceyhun SB (2015) Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): Transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. Ecotoxicol Environ Saf 111:206–214.  https://doi.org/10.1016/j.ecoenv.2014.09.027 CrossRefGoogle Scholar
  67. Tsui, M. T., Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189-1197.  https://doi.org/10.1016/S0045-6535(03)00306-0
  68. Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG Jr (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616:255–268.  https://doi.org/10.1016/j.scitotenv.2017.10.309 CrossRefGoogle Scholar
  69. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149.  https://doi.org/10.1016/S1382-6689(02)00126-6 CrossRefGoogle Scholar
  70. Vasseur P, Leguille C (2004) Defense systems of benthic invertebrates in response to environmental stressors. Environ Toxicol 19(4):433–436.  https://doi.org/10.1002/tox.20024 CrossRefGoogle Scholar
  71. Villeneuve A, Humbert JF, Larroudé S (2011) Herbicide contamination of freshwater ecosystems: impact on microbial communities Margarita Stoytcheva. Pesticides - Formulations, Effects, Fate, InTech Open, pp 285-312, 2011. bioemco-00567203Google Scholar
  72. Wu RS, Siu WH, Shin PK (2005) Induction, adaptation and recovery of biological responses: implications for environmental monitoring. Mar Pollut Bull 51(8-12):623–634.  https://doi.org/10.1016/j.marpolbul.2005.04.016 CrossRefGoogle Scholar
  73. Xuereb B, Lefèvre E, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat Toxicol 94(2):114–122.  https://doi.org/10.1016/j.aquatox.2009.06.010 CrossRefGoogle Scholar
  74. Yang ZP, Dettbarn WD (1996) Diisopropylphosphorofluriodate induced choliner- gic hyperactivity and lipid peroxidation. Toxicol Appl Pharmacol 138:48–53CrossRefGoogle Scholar
  75. Yonar ME, Yonar SM, Ural MŞ, Silici S, Düşükcan M (2012) Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/antioxidative status of Cyprinus carpio carpio. Food Chem Toxicol 50(8):2703–2708.  https://doi.org/10.1016/j.fct.2012.05.032 CrossRefGoogle Scholar
  76. Yonar ME, Yonar SM, Pala A, Silici S, Saglam N (2015) Trichlorfon-induced haematological and biochemical changes in Cyprinus carpio: ameliorative effect of propolis. Dis Aquat Org 114(3):209–216.  https://doi.org/10.3354/dao02866 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of FisheriesMunzur UniversityTunceliTurkey

Personalised recommendations