Advertisement

Operational parameters in H2S biofiltration under extreme acid conditions: performance, biomass control, and CO2 consumption

  • Teresa García-Pérez
  • Sergio Hernández-Jiménez
  • Sergio RevahEmail author
Short Research and Discussion Article
  • 23 Downloads

Abstract

This paper reports the treatment of gaseous hydrogen sulfide, H2S, in a biotrickling filter (BTF) under extreme acidic pH conditions (≈ 1.2). The effect of adding thiosulfate (Na2S2O3.5H2O) to promote biomass growth, feeding low concentrations of ozone to control excess biomass, and the carbon dioxide, CO2, consumption by the chemolithoautotrophic consortium were evaluated. The results showed a global removal efficiency over 98.0% with loads of H2S > 50 g m−3 h−1 (at 639 ppmv) and a linear relation between H2S elimination capacity with the CO2 consumption rate of around 0.1 gCO2/gH2S. Supplementing sulfur in the medium with 2 g L−1 thiosulfate resulted in negative effect performance. Respirometry tests proved that the consortium could not utilize this sulfur form at this pH. Additionally, continuous and intermittent O3 feeding to the BTF in gaseous concentrations of 98 ± 5.4 mg m−3 caused a slight decreased in the performance but the biomass activity in the BTF was only slightly affected allowing a quick performance recovery once O3 addition was suspended.

Keywords

H2S biodegradation CO2 consumption Ozone addition Thiosulfate addition 

Notes

Acknowledgements

The authors thank Dr. Javiera Cervini-Silva for her useful comments.

Funding information

The authors thank the Universidad Autónoma Metropolitana and the Consejo Nacional de Ciencia y Tecnología for the scholarship (372404) and the financial support to develop this project.

Supplementary material

11356_2019_6789_MOESM1_ESM.docx (530 kb)
ESM 1 (DOCX 530 kb)

References

  1. Adams C, Gorg S (2002) Effect of pH and gas-phase ozone concentration on the decolorization of common textile dyes. J Environ Eng 128(3):293–298.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(293 CrossRefGoogle Scholar
  2. Alcántara S, Velasco A, Revah S (2004) Sulfur formation by steady-state continuous cultures of a sulfoxidizing consortium and Thiobacillus thioparus ATCC 23645. Environ Technol 25(10):1151–1157.  https://doi.org/10.1080/09593332508618381 CrossRefGoogle Scholar
  3. Arellano-García L, Revah S, Ramírez M, Gómez JM, Cantero D (2009) Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Environ Technol 30(12):1273–1279.  https://doi.org/10.1080/09593330902911713 CrossRefGoogle Scholar
  4. Arellano-García L, Gonzalez-Sanchez A, Baquerizo G, Hernandez-Jimenez S, Revah S (2010) Treatment of carbon disulfide and ethanethiol vapors in alkaline biotrickling filters using an alkaliphilic sulfo-oxidizing bacterial consortium. J Chem Technol Biotechnol 85(3):328–335.  https://doi.org/10.1002/jctb.2328 CrossRefGoogle Scholar
  5. Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem 46(1):344–352.  https://doi.org/10.1016/j.procbio.2010.09.007 CrossRefGoogle Scholar
  6. Covarrubias-García I, Aizpuru A, Arriaga S (2018) Temporal and longitudinal biofilm matrix analysis of a biofilter treating ethyl acetate during ozonation. Environ Sci Pollut Res 25:19155–19166.  https://doi.org/10.1007/s11356-018-2084-1 CrossRefGoogle Scholar
  7. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  8. García-Pérez T, Aizpuru A, Arriaga S (2013) By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses. J Hazard Mater 262:732–740.  https://doi.org/10.1016/j.jhazmat.2013.09.053 CrossRefGoogle Scholar
  9. García-Pérez T, Le Borgne S, Revah S (2016) Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions. Appl Microbiol Biotechnol 100(24):10637–10647.  https://doi.org/10.1007/s00253-016-7861-5 CrossRefGoogle Scholar
  10. González-Sánchez A, Revah S, Deshusses MA (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42(19):7398–7404.  https://doi.org/10.1021/es800437f CrossRefGoogle Scholar
  11. Hou J, Li M, Xia T, Hao Y, Ding J, Liu D, Xi B, Liu H (2016) Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. Environ Sci Pollut Res 23:20628–20636.  https://doi.org/10.1007/s11356-016-7238-4 CrossRefGoogle Scholar
  12. Jaber MB, Couvert A, Amrane A, Rouxel F, Le Cloirec P, Dumont E (2016) Biofiltration of high concentration of H2S in waste air under extreme acidic conditions. New Biotechnol 33(1):136–143.  https://doi.org/10.1016/j.nbt.2015.09.008 CrossRefGoogle Scholar
  13. Jin Y, Veiga MC, Kennes C (2005a) Autotrophic deodorization of hydrogen sulfide in a biotrickling filter. J Chem Technol Biotechnol 80(9):998–1004.  https://doi.org/10.1002/jctb.1275 CrossRefGoogle Scholar
  14. Jin Y, Veiga MC, Kennes C (2005b) Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnol Bioeng 92(4):462–471.  https://doi.org/10.1002/bit.20607 CrossRefGoogle Scholar
  15. Jin Y, Veiga MC, Kennes C (2007) Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions. Chemosphere 68(6):1186–1193.  https://doi.org/10.1016/j.chemosphere.2007.01.069 CrossRefGoogle Scholar
  16. Kim S, Deshusses MA (2005) Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter. Chem Eng J 113(2-3):119–126.  https://doi.org/10.1016/j.cej.2005.05.001 CrossRefGoogle Scholar
  17. Kim JH, Rene ER, Park HS (2008) Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresour Technol 99(3):583–588.  https://doi.org/10.1016/j.biortech.2006.12.028 CrossRefGoogle Scholar
  18. Lee EY, Lee EU, Cho K (2006) Wook H (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101(4):309–314.  https://doi.org/10.1263/jbb.101.309 CrossRefGoogle Scholar
  19. Masau RJY, Oh JK, Suzuki I (2001) Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans. Can J Microbiol 47(4):348–358CrossRefGoogle Scholar
  20. Nakamura K, Nakamura M, Yoshikawa H, Amano Y (2001) Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814. Biosci Biotechnol Biochem 65(1):102–108.  https://doi.org/10.1271/bbb.65.102 CrossRefGoogle Scholar
  21. Perez RC, Matin A (1982) Carbon dioxide assimilation by Thiobacillus novellus under nutrient-limited mixotrophic conditions. J Bacteriol 150(1):46–51Google Scholar
  22. Rakness K, Gordon G, Langlais B, Masschelein W, Matsumoto N, Richard Y, Somiya I (1996) Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone-Sci Eng 18(3):209–229.  https://doi.org/10.1080/01919519608547327 CrossRefGoogle Scholar
  23. Ramírez M, Gómez JM, Aroca G, Cantero D (2009) Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresour Technol 100:4989–4995.  https://doi.org/10.1016/j.biortech.2009.05.022 CrossRefGoogle Scholar
  24. Rene ER, López ME, Veiga MC, Kennes C (2010) Steady- and transient-state operation of a two-stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and α-pinene. J Chem Technol Biotechnol 85(3):336–348.  https://doi.org/10.1002/jctb.2343 CrossRefGoogle Scholar
  25. Revah S, Morgan-Sagastume JM (2005) Methods of odor and VOC control. In: Shareefdeen Z, Singh A (eds) Biotechnology for odor and air pollution control, 1st edn. Springer, pp 29–63Google Scholar
  26. Roncero MB, Queral MA, Colom JF, Vidal T (2003) Why acid pH increases the selectivity of the ozone bleaching processes. Ozone-Sci Eng 25(6):523–534.  https://doi.org/10.1080/01919510390481838 CrossRefGoogle Scholar
  27. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry. John Wiley & Sons, Inc., HobokenGoogle Scholar
  28. Solcia RB, Ramírez M, Fernández M, Cantero D, Bevilaqua D (2014) Hydrogen sulphide removal from air by biotrickling filter using open-pore polyurethane foam as a carrier. Biochem Eng J 84(0): 1-8.  https://doi.org/10.1016/j.bej.2013.12.019 CrossRefGoogle Scholar
  29. Wang Z, Xiu G, Qiao T, Zhao K, Zhang D (2013) Coupling ozone and hollow fibers membrane bioreactor for enhanced treatment of gaseous xylene mixture. Bioresour Technol 130:52–58.  https://doi.org/10.1016/j.biortech.2012.11.106 CrossRefGoogle Scholar
  30. Xi JY, Saingam P, Gu F, Hu HY, Zhao XF (2014) Effect of continuous ozone injection on performance and biomass accumulation of biofilters treating gaseous toluene. Appl Microbiol Biotechnol 100:3385–3385.  https://doi.org/10.1007/s00253-014-5888-z CrossRefGoogle Scholar
  31. Yuan J, Du L, Li S, Yang F, Zhang Z, Li G, Wang G (2019) Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ Sci Pollut Res 26:3762–3770.  https://doi.org/10.1007/s11356-018-3795-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Procesos y TecnologíaUniversidad Autónoma Metropolitana – CuajimalpaCd. de MéxicoMéxico

Personalised recommendations