Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper(II) chloride toxicity

  • Oksal MacarEmail author
  • Tuğçe Kalefetoğlu Macar
  • Kültiğin Çavuşoğlu
  • Emine Yalçın
Research Article


In this study, the protective effects of 50 mg/L and 100 mg/L doses of anthocyanin-rich bilberry extracts (ABE) against the toxicity caused by 20 μM copper(II) chloride (CuCl2) on Allium cepa L. were investigated. Alterations in weight gain, germination percentage, and root elongation were evaluated as physiological parameters while micronucleus (MN), mitotic index (MI), and chromosomal abnormality (CA) frequency were studied as cytogenetic parameters. Oxidative stress indicators such as malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity, and catalase (CAT) activity were analyzed and also damages in root tip meristem cells were determined by cross sections. As a result, it was found that the percentage of germination, weight gain, root length, and MI decreased and the frequency of MN and CAs increased with CuCl2 treatment. CuCl2 exposure caused a significant increase in SOD and CAT activities and MDA levels. A number of anatomical abnormalities and damages were detected in the cross sections of CuCl2-treated roots. On the other hand, ABE applications ameliorated notably all copper-induced damages in a dose-dependent manner. Therefore, the powerful protective potential of ABE against copper-induced toxicity was proven through an extensive study in a popular plant model.


Allium cepa L. Anthocyanin Antioxidant Bilberry CuCl2 Genotoxicity 


Funding information

The present study was supported financially by the Giresun University Scientific Research Unit (project no. FEN-BAP-A-150219-21).


  1. Aly A, Maraei R, El-Leel OA (2019) Comparative study of some bioactive compounds and their antioxidant activity of some berry types. Potr S J F Sci 13(1):515–523CrossRefGoogle Scholar
  2. Atik M, Karagüzel O, Ersoy S (2007) Sıcaklığın Dalbergia sissoo tohumlarının çimlenme özelliklerine etkisi. Mediterr Agric Sci 20(2):203–210Google Scholar
  3. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287CrossRefGoogle Scholar
  4. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140Google Scholar
  5. Bolsunovsky A, Dementyev D, Trofimova E, Iniatkina E, Kladko Y, Petrichenkov M (2019) Chromosomal aberrations and micronuclei induced in onion (Allium cepa) by gamma-radiation. J Environ Radioact 207:1–6CrossRefGoogle Scholar
  6. Çavuşoğlu K, Yalçın E, Türkmen Z, Yapar K, Çavuşoğlu K, Çiçek F (2011) Investigation of toxic effects of the glyphosate on Allium cepa. JAS 17:131–142Google Scholar
  7. Doğanlar Z, Atmaca M (2011) Influence of airborne pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water Air Soil Pollut 214(1/4):509–523CrossRefGoogle Scholar
  8. Doncheva S, Nikolov B, Ogneva V (1996) Effect of copper excess on the morphology of the nucleus in maize root meristem cells. Physiol Plant 96(1):118–122CrossRefGoogle Scholar
  9. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118Google Scholar
  10. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN Project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75CrossRefGoogle Scholar
  11. Fiskesjo G (1997) Allium test for screening chemicals: evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publishers, New York, pp 307–333CrossRefGoogle Scholar
  12. Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44(1-2):143–158CrossRefGoogle Scholar
  13. Franscescon F, Mazon SC, Bertoncello KT, Boligon AA, Sachett A, Rambo CL, Rosemberg DB, Magro JD, Siebel AM (2018) Protective role of jaboticaba Plinia peruviana peel extract in copper-induced cytotoxicity in Allium cepa. Environ Sci Pollut Res 25(35):35322–35329CrossRefGoogle Scholar
  14. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol 189(1-2):147–163CrossRefGoogle Scholar
  15. Geremias R, Fattorini D, Fávere VT, Pedrosa RC (2010) Bioaccumulation and toxic effects of copper in common onion Allium cepa L. Chem Ecol 26(1):19–26CrossRefGoogle Scholar
  16. Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic assessment of chromium and arsenic using chromosomal behavior of root meristem in Allium cepa L. Bull Environ Contam Toxicol 100(6):803–808CrossRefGoogle Scholar
  17. İnceer H, Beyazoğlu O (2000) Bakır klorür’ün Vicia hirsuta (L.) SF Gray kök ucu hücreleri üzerine sitogenetik etkileri. Turk J Biol 24:553–559Google Scholar
  18. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicol 283(2-3):65–87CrossRefGoogle Scholar
  19. Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33(1):99–119CrossRefGoogle Scholar
  20. Karlsen A, Paur I, Bøhn SK, Sakhi AK, Borge GI, Serafini M, Erlund I, Laake P, Tonstad S, Blomhoff R (2010) Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 49(6):345–355CrossRefGoogle Scholar
  21. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res Rev Mutat Res 682(1):71–81CrossRefGoogle Scholar
  22. Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471–486CrossRefGoogle Scholar
  23. Liu D, Jiang W, Meng Q, Zou J, Gu J, Zeng M (2009) Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell 33(1):25–32Google Scholar
  24. Mangalampalli B, Dumala N, Grover P (2018) Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J Environ Sci 66:125–137CrossRefGoogle Scholar
  25. Martin-Aragon S, Basabe B, Benedi JM, Villar AM (1998) Antioxidant action of Vaccinium myrtillus L. Phytother Res 12:104–106CrossRefGoogle Scholar
  26. Meng Q, Zou J, Zou JH, Jiang WS, Liu DH (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L). Acta Biol Cracov Ser Bot 49(1):95–101Google Scholar
  27. Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72(2):596–602CrossRefGoogle Scholar
  28. Qin R, Ning C, Björn LO, Li S (2016) Proteomic analysis of Allium cepa var. agrogarum L. roots under copper stress. Plant Soil 401(1-2):197–212CrossRefGoogle Scholar
  29. Samuel OB, Osuala FI, Odeigah PG (2010) Cytogenotoxicity evaluation of two industrial effluents using Allium cepa assay. Afr J Environ Sci Technol 4(1):21–27Google Scholar
  30. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56(3):627–629CrossRefGoogle Scholar
  31. Sellappan S, Akoh CC, Krewer G (2002) Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 50(8):2432–2438CrossRefGoogle Scholar
  32. Seth CS, Misra V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicol Environ Saf 71(3):711–716CrossRefGoogle Scholar
  33. Silveira GL, Lima MGF, dos Reis GB, Palmieri MJ, Andrade-Vieria LF (2017) Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359–367CrossRefGoogle Scholar
  34. Smeriglio A, Monteleone D, Trombetta D (2014) Health effects of Vaccinium myrtillus L.: evaluation of efficacy and technological strategies for preservation of active ingredients. Mini-Rev Med Chem 14(7):567–584CrossRefGoogle Scholar
  35. Srivastava R, Kumar D, Gupta SK (2005) Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Bioresour Technol 96:1867–1871CrossRefGoogle Scholar
  36. Staykova TA, Ivanova EN, Velcheva IG (2005) Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of southwest Bulgaria. J Cell Mol Biol 4:41–46Google Scholar
  37. Takikawa M, Inoue S, Horio F, Tsuda T (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 140(3):527–533CrossRefGoogle Scholar
  38. Theophanides T, Anastassopoulou J (2002) Copper and carcinogenesis. Crit Rev Oncol Hematol 42(1):57–64CrossRefGoogle Scholar
  39. Unyayar S, Celik A, Cekic FO, Gozel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81CrossRefGoogle Scholar
  40. Valentova K, Ulrichova J, Cvak L, Simanek V (2007) Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem 101:912–917CrossRefGoogle Scholar
  41. Vargas JT, Rodríguez-Monroy M, Meyer ML, Montes-Belmont R, Sepúlveda-Jiménez G (2017) Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 136:85–93CrossRefGoogle Scholar
  42. Vesna S, Stegnar P, Lovka M, Toman MJ (1996) The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutat Res 368:171–179CrossRefGoogle Scholar
  43. Yalçın E, Uzun A, Çavuşoğlu K (2019) In vivo epiclorohidrine toxicity: cytogenetic, biochemical, physiological, and anatomical evidences. Environ Sci Pollut Res 26:22400–22406CrossRefGoogle Scholar
  44. Yıldız M, Ciğerci İH, Konuk M, Fidan AF, Terzi H (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75(7):934–938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Oksal Macar
    • 1
    Email author
  • Tuğçe Kalefetoğlu Macar
    • 1
  • Kültiğin Çavuşoğlu
    • 2
  • Emine Yalçın
    • 2
  1. 1.Department of Food Technology, Şebinkarahisar School of Applied SciencesGiresun UniversityGiresunTurkey
  2. 2.Department of Biology, Faculty of Science and ArtsGiresun UniversityGiresunTurkey

Personalised recommendations