The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil

  • Andréa Souza Castro
  • Joel Avruch Goldenfum
  • André Lopes da Silveira
  • Ana Luiza Bertani DallAgnol
  • Larissa Loebens
  • Carolina Faccio DemarcoEmail author
  • Diuliana Leandro
  • Willian Cézar Nadaleti
  • Maurizio Silveira Quadro
Research Article


The green roofs are structures characterized by the application of vegetation cover in the buildings, using adequate waterproofing and drainage systems. It allows the reduction of surface runoff and delay in peak flow, contributing to the mitigation of flood events in urban areas. Therefore, this study aimed to evaluate the effect of the use of vegetal coverings on the surface runoff, taking into account quantitative and qualitative aspects, using an experimental module installed in the city of Porto Alegre, Brazil. The experimental station consisted of four modules: two horizontal modules with and without vegetation cover and two modules with slopes of 15° with and without vegetation cover. It was evaluated 19 precipitation events, and it was verified the volumes drained in each module after 3, 6 and 12 h from the beginning of precipitation. The water samples were collected in order to analyse the quality of the runoff from the experimental modules. The results have shown that the use of vegetal coverings can provide better distribution of the surface runoff, as well as a decrease of the speed of excess water release with no surface runoff in the first 3 h after the onset of rainfall in the horizontal module. Additionally, it was proved the reduction in drained volumes, with the flat module with vegetation cover being capable of retaining completely precipitations with volumes of approximately 22 mm. The vegetation cover module in roofs was the one that has presented better results regarding the reduction of the flow, presenting an average retention percentage of 91.7% for the first 3 h, indicating that the slope is an important factor. The physical-chemical analysis of the water shows that for all analysed modules, it is possible to use water for non-potable uses, although the water quality of the modules with vegetation cover is lower when compared to the water coming from the module without vegetation cover.


Surface runoff Water quality Vegetated roof Water retaining capacity Urban water management Urban flooding 


Funding information

The authors were granted research funding from the National Council for Scientific and Technological Development (CNPq). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. APHA. American Public Health Association (2005) Standard methods for the examination of water and wastewater, Washington DCGoogle Scholar
  2. Beecham S, Razzaghmanesh M (2015) Water quality and quantity investigation of green roofs in a dry climate. Water Res 70:370–384CrossRefGoogle Scholar
  3. Bengtsson L (2005) Peak flows from thin sedum-moss roof. Nord Hydrol 36:269–280CrossRefGoogle Scholar
  4. Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng 36:351–360CrossRefGoogle Scholar
  5. Berndtsson JC, Emilsson T, Bengtsson L (2006) The influence of extensive vegetated roofs on runoff quality. Sci Total Environ 355:48–63CrossRefGoogle Scholar
  6. Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35:369–380CrossRefGoogle Scholar
  7. Buffam I, Mitchell ME (2015) Nutrient cycling in green roof ecosystems. In: Sutton R (ed) Green roof ecosystems. Springer, New York, pp 107–137CrossRefGoogle Scholar
  8. Buffam I, Mitchell ME, Durtsche RD (2016) Environmental drivers of seasonal variation in green roof runoff water quality. Ecol Eng 91:506–514. CrossRefGoogle Scholar
  9. CANOAS. Lei n° 5840, de 27 de maio de 2014. Dispõe sobre a criação de telhados verdes e seus critérios técnicos especificados nesta lei e dá outras providências. Canoas-RS. 27 de maio de 2014. Diário Oficial do Município de CanoasGoogle Scholar
  10. Carson TB, Marasco DE, Culligan PJ, McGillis WR (2013) Hydrological performance of extensive green roofs in New York City: observations and multi-year modelling of  three full-scale systems. Environ Res Lett 8(2):24–36CrossRefGoogle Scholar
  11. Carter TL, Jackson CR (2007) Vegetated roofs for storm water management at multiple spatial scales. Landscape Urban Plann 80:84–94CrossRefGoogle Scholar
  12. CEIC. Centro Integrado de Comando da Cidade de Porto Alegre (2019) Precipitation volume: historical average rainfall of Porto Alegre (In Portuguese).Google Scholar
  13. Chen CF (2013) Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecol Eng 52:51–58. CrossRefGoogle Scholar
  14. Dietz ME, Clausen JC (2005) A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut 167:123–138CrossRefGoogle Scholar
  15. Fassman-Beck E, Voyde E, Simcock R, Hong YS (2013) Living roofs in 3 locations: does configuration affect runoff mitigation? J Hydrol. 490:11–20CrossRefGoogle Scholar
  16. Getter KL, Rowe DB, Andresen JA (2007) Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng 31:225–231CrossRefGoogle Scholar
  17. GIOÂNIA. Lei complementar n° 235, de 28 de dezembro de 2012. Institui o Programa IPTU Verde no Município de Goiânia. Goiânia-GO. 28 de dezembro de 2012. Diário Oficial do Município de GoiâniaGoogle Scholar
  18. GUARULHOS. Lei n° 6793, de 28 de dezembro de 2010. Dispõe sobre o lançamento, arrecadação e fiscalização do imposto sobre a propriedade predial e territorial urbana - IPTU e dá outras providências. Guarulhos-SP. 28 de dezembro de 2010. Diário Oficial do Município de GuarulhosGoogle Scholar
  19. GUARULHOS. Lei n° 7031, de 17 de abril de 2012. Dispõe sobre a instalação do “telhado verde” nos locais que especifica, e dá outras providências. Guarulhos-SP. 17 de abril de 2012. Diário Oficial do Município de GuarulhosGoogle Scholar
  20. Gwak JH, Lee BK, Lee WK, Sohn SY (2017) Optimal location selection for the installation of urban green roofs considering honeybee habitats along with sócio-economic and environmental effects. J Environ Manage 189:125–133CrossRefGoogle Scholar
  21. Hashemi SS, Mahmud HB, Ashraf MA (2015) Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: a review. Renew Sustain Rev 52:669–679CrossRefGoogle Scholar
  22. Hutchinson D, Abrams P, Retzlaff R, Liptan T (2003) Storm water monitoring two ecoroofs in Portland, Oregon, USA, In: Proceedings of the greening rooftops for sustainable communities. Chicago, IL, USAGoogle Scholar
  23. JOÃO PESSOA. Lei n° 10047, de 09 de julho de 2013. Dispõe sobre a obrigatoriedade da instalação do “Telhado Verde” nos locais que especifica, e dá outras providências. João Pessoa-PB. 9 de julho de 2013. Diário Oficial da cidade de João PessoaGoogle Scholar
  24. Johnson C, Schweinhart S, Buffam I (2016) Plant species richness enhances nitrogen retention in green roof plots. Ecol Appl 26(7):2130–2144CrossRefGoogle Scholar
  25. Lee JY, Lee MJ, Han M (2015) A pilot study to evaluate runoff quantity from green roofs. J Environ Manage 152:171–176CrossRefGoogle Scholar
  26. Li Y, Babcock R (2014) Green roofs against pollution and climate change. A review. Agronomy for Sustainable Development. Springer Verlag 34:695–705Google Scholar
  27. Liu C, Li Y, Li J (2017) Geographic information system-based assessment of mitigating flash-flood disaster from green roof systems. Comput Environ Urban Syst 64:321–331CrossRefGoogle Scholar
  28. Nagase A, Dunnett N (2012) Amount of water runoff from different vegetation types on extensive green roofs: effects of plants species, diversity and plant structure. Landscape Urban Plann 104:356–363CrossRefGoogle Scholar
  29. Noya MG, Cuquel FL, Schafer G, Armindoc RA (2017) Substrates for cultivating herbaceous perennial plants in extensive green roofs. Ecol Eng 102:662–669CrossRefGoogle Scholar
  30. Palla A, Gnecco I, Lanza LG (2010) Hydrologic restoration in the urban environment using green roofs. Water 2:140–154CrossRefGoogle Scholar
  31. PORTO ALEGRE. Instrução n° 22/2007. Visa garantir nos imóveis, área Livre de qualquer intervenção, permeável, passível de arborização e dá outras providências. Porto Alegre-RS. Outubro de 2007Google Scholar
  32. Razzaghmanesh M, Beecham S (2014) The hydrological behaviour of extensive and intensive green roofs in a dry climate. Sci Total Environ 499:284–296CrossRefGoogle Scholar
  33. Razzaghmanesh M, Beechama S, Kazemi F (2014) Impact of green roofs on stormwater quality in a South Australian urban environment. Sci Tot Environ 470:651–659CrossRefGoogle Scholar
  34. RECIFE. Decreto n° 29100, de 06 de novembro de 2017. Regulamenta o art. 5° da Lei n° 8.474, de 02 de outubro de 2013, e institui o Programa de Certificação Sustentável “IPTU VERDE” em edificações no Município de Salvador, que estabelece benefícios fiscais aos participantes do programa, assim como o art. 5° da Lei 8.723 de 22 de dezembro de 2014 e dá outras providências. Recife-PE. 6 de novembro de 2017. Diário Oficial da Cidade de RecifeGoogle Scholar
  35. Roehr D, Kong Y (2010) Runoff reduction effects of green roofs in Vancouver, BC, Kelowna, BC, and Shanghai, PR China. Can Water Res J 35:53–68CrossRefGoogle Scholar
  36. SALVADOR. Decreto n° 29100, de 06 de novembro de 2017. Regulamenta o art. 5° da Lei n° 8.474, de 02 de outubro de 2013, e institui o Programa de Certificação Sustentável “IPTU VERDE” em edificações no Município de Salvador, que estabelece benefícios fiscais aos participantes do programa, assim como o art. 5° da Lei 8.723 de 22 de dezembro de 2014 e dá outras providências. Salvador-BA. 6 de novembro de 2017. Diário Oficial da cidade de SalvadorGoogle Scholar
  37. SANTOS. Lei Complementar n° 913, de 21 de dezembro de 2015. Concede incentivo fiscal à implantação de “coberturas verdes” nos edifícios do município, e dá outras providências. Santos-SP. 21 de dezembro de 2015. Diário Oficial do Município de SantosGoogle Scholar
  38. Santos SM, Silva JFF, Santos GC, Macedo PMT, Gavazza S (2019) Integrating conventional and green roofs for mitigating thermal discomfort and water scarcity in urban áreas. J Cleaner Prod 219:639–648CrossRefGoogle Scholar
  39. SÃO PAULO. Decreto n° 53889, de 8 de maio de 2013. Regulamenta o Termo de Compromisso Ambiental - TCA, instituído pelo artigo 251 e seguintes da Lei n° 13.430, de 13 de setembro de 2002 (Plano Diretor Estratégico). São Paulo-SP. 8 de maio de 2013. Diário Oficial da Cidade de São PauloGoogle Scholar
  40. Scholtz-Barth K (2001) Green roofs: storm water management from the top down. Environ Des ConstrGoogle Scholar
  41. Shafique M, Kim R, Rafiq M (2018) Green roof benefits, opportunities and challenges – a review. Renewable Sustainable Energy Rev. 90:757–773CrossRefGoogle Scholar
  42. Speak F, Rothwell J, Lindley J, Smith L (2013) Rainwater runoff retention on an aged intensive green roof. Sci Total Environ 461:28–38CrossRefGoogle Scholar
  43. Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2014) Metal and nutrient dynamics on an aged intensive green roof. Environ Pollut 184:33–43CrossRefGoogle Scholar
  44. Teemusk A, Mander U (2007) Rainwater runoff quantity and quality performance from a green roof: the effects of short-term events. Ecol Eng 30:271–277CrossRefGoogle Scholar
  45. Ugai G (2016) Evaluation of Sustainable Roof from Various Aspects and Benefits of Agriculture Roofing in Urban Core. Proc Soc Behavioral Sci 216:850–860CrossRefGoogle Scholar
  46. VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005) Green roofs stormwater retention: effects of roof surface, slope, and media depth. J Environ Qual 34:1036–1044CrossRefGoogle Scholar
  47. Versini PA, Ramier D, Berthier E, Gouvello B (2015) Assessment of the hydrological impacts of green roof: from building scale to basin scale. J. Hydrol. 524:562–575CrossRefGoogle Scholar
  48. Vieira NL, Queiroz TM, Fagundes MC, Dallacort R (2013) Potential of utilization of rainwater excess for irrigation of green roofs in Mato Grosso, Brasil. Engenharia Agrícola 33(4):857–864CrossRefGoogle Scholar
  49. Vijayaraghavan K (2016) Green roofs: a critical review on the role of components, benefits, limitations and trends. Renewable Sustainable Energy Rev 57:740–752CrossRefGoogle Scholar
  50. Vijayaraghavan K, Joshi UM (2015) Application of seaweed as substrate additive in green roofs: enhancement of water retention and sorption capacity. Landscape Urban Plann 143:25–32CrossRefGoogle Scholar
  51. Villarreal EL, Bengtsson L (2005) Response of a sedum green-roof to individual rain events. Ecol Eng 25:1–7CrossRefGoogle Scholar
  52. Viola F, Hellies M, Deidda R (2017) Retention performance of green roofs in representative climates worldwide. J Hydrol 553:763–772CrossRefGoogle Scholar
  53. Wang X, Tian Y, Zhao X (2017) The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci Total Environ 592:465–476CrossRefGoogle Scholar
  54. Zhang Q, Miao L, Wang X, Liu D, Zhu L, Zhou B, Liu J (2015) The capacity of greening roof to reduce stormwater runoff and pollution. Landscape Urban Plann 144:142–150CrossRefGoogle Scholar
  55. Zölch T, Henze L, Keilholz P, Pauleit S (2017) Regulating Urban surface runoff through nature-based solutions - an assessment at the micro-scale. Environ Res 157:135–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Andréa Souza Castro
    • 1
  • Joel Avruch Goldenfum
    • 2
  • André Lopes da Silveira
    • 2
  • Ana Luiza Bertani DallAgnol
    • 1
  • Larissa Loebens
    • 3
  • Carolina Faccio Demarco
    • 1
    Email author
  • Diuliana Leandro
    • 1
  • Willian Cézar Nadaleti
    • 1
  • Maurizio Silveira Quadro
    • 1
  1. 1.Environmental Sciences Postgraduate Program, Engineering CenterUFPelPelotasBrazil
  2. 2.Institute of Hydraulic Research – IPH, UFRGSFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Environmental and Sanitary Engineering, Engineering CenterUFPelPelotasBrazil

Personalised recommendations