Advertisement

Ketamine exerts neurotoxic effects on the offspring of pregnant rats via the Wnt/β-catenin pathway

  • Xintong Zhang
  • Jinghua Zhao
  • Tian Chang
  • Qi Wang
  • Wenhan Liu
  • Li GaoEmail author
Research Article

Abstract

Ketamine is an anesthetic and analgesic drug widely used in clinical anesthesia. To ensure the safety of anesthesia, it is necessary to study its side effects. Pregnancy is a key period for the development and growth of offspring. During this period, the proliferation and differentiation of brain cells and the synaptic formation are easily affected by external stimuli. Therefore, the aim of this study was to evaluate the effect of ketamine. Ketamine anesthesia was administered to rats in the second trimester of pregnancy, and two behavioral tests were performed, including contextual and cued fear conditioning test (CFC) and Morris water maze (MWM). At the end of the behavioral test, Nissl and Golgi staining were used to detect the dendrite density of hippocampal neurons to reveal the effect of maternal ketamine anesthesia on the hippocampus of offspring. Key proteins and their downstream transcription factors in Wnt/β-catenin signaling pathway from the embryonic development to the adulthood were studied. Our results showed that rats receiving maternal ketamine suffered from nerve injury. The density of hippocampal nerves and dendritic spine changed. Some genes related to Wnt/β-catenin pathway and Tcf/Lef were downregulated. In conclusion, maternal anesthesia with ketamine in the second trimester of pregnancy can lead to cognitive memory impairment and neurotoxicity in the hippocampus of offspring through Wnt/ β-catenin signaling pathway.

Keywords

Ketamine Rat offspring Pregnancy anethesia Neurotoxicity Wnt/β-catenin pathway 

Notes

Author contributions

XTZ and LG designed the experiments. XTZ, TC, QW, HJZ, and WHL performed the experiments. XTZ interpreted the data. XTZ wrote and edited the manuscript. All authors critically reviewed content and approved final version for publication. All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the journal.

Funding information

This study was funded by the National Natural Science Foundation of China (31572580 and 31372491).

References

  1. Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S, Salinas PC (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174(1):127–139.  https://doi.org/10.1083/jcb.200511054 CrossRefGoogle Scholar
  2. Amendola D, De Salvo M, Marchese R, Verga Falzacappa C, Stigliano A, Carico E et al (2009) Myc down-regulation affects cyclin D1/cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell line. Cell Prolif 42(1):94–109.  https://doi.org/10.1111/j.1365-2184.2008.00576.x CrossRefGoogle Scholar
  3. Ataman B, Ashley J, Gorczyca M, Ramachandran P, Fouquet W, Sigrist SJ, Budnik V (2008) Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57(5):705–718.  https://doi.org/10.1016/j.neuron.2008.01.026 CrossRefGoogle Scholar
  4. Barnhart CD, Yang D, Lein PJ (2014) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 10(4):e0124521CrossRefGoogle Scholar
  5. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, Dissen GA, Creeley CE, Olney JW (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116(2):372–384.  https://doi.org/10.1097/ALN.0b013e318242b2cd CrossRefGoogle Scholar
  6. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48(1-2):29–69CrossRefGoogle Scholar
  7. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R et al (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927.  https://doi.org/10.1074/jbc.M705943200 CrossRefGoogle Scholar
  8. Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31(26):9466–9471.  https://doi.org/10.1523/JNEUROSCI.6311-10.2011 CrossRefGoogle Scholar
  9. Chen J, Park CS, Tang SJ (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281(17):11910–11916.  https://doi.org/10.1074/jbc.M511920200 CrossRefGoogle Scholar
  10. Coronel-Oliveros CM, Pacheco-Calderon R (2018) Prenatal exposure to ketamine in rats: implications on animal models of schizophrenia. Dev Psychobiol 60(1):30–42.  https://doi.org/10.1002/dev.21586 CrossRefGoogle Scholar
  11. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90CrossRefGoogle Scholar
  12. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83CrossRefGoogle Scholar
  13. Duan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology (Berl) 228(3):451–461.  https://doi.org/10.1007/s00213-013-3048-2 CrossRefGoogle Scholar
  14. Femenia T, Gomez-Galan M, Lindskog M, Magara S (2012) Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Res 1476:58–70.  https://doi.org/10.1016/j.brainres.2012.03.053 CrossRefGoogle Scholar
  15. Fortress AM, Schram SL, Tuscher JJ, Frick KM (2013) Canonical Wnt signaling is necessary for object recognition memory consolidation. J Neurosci 33(31):12619–12626.  https://doi.org/10.1523/JNEUROSCI.0659-13.2013 CrossRefGoogle Scholar
  16. Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62(4):510–525.  https://doi.org/10.1016/j.neuron.2009.04.022 CrossRefGoogle Scholar
  17. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100(5):525–535CrossRefGoogle Scholar
  18. Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS, Christensen K (2011) Academic performance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology 114(5):1076–1085.  https://doi.org/10.1097/ALN.0b013e31820e77a0 CrossRefGoogle Scholar
  19. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25(1):81–86.  https://doi.org/10.1111/j.1460-9568.2006.05245.x CrossRefGoogle Scholar
  20. Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS et al (2012) Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130(3):e476–e485.  https://doi.org/10.1542/peds.2011-3822 CrossRefGoogle Scholar
  21. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110(4):805–812.  https://doi.org/10.1097/ALN.0b013e31819c7124 CrossRefGoogle Scholar
  22. Kong FJ, Ma LL, Hu WW, Wang WN, Lu HS, Chen SP (2012a) Fetal exposure to high isoflurane concentration induces postnatal memory and learning deficits in rats. Biochem Pharmacol 84(4):558–563.  https://doi.org/10.1016/j.bcp.2012.06.001 CrossRefGoogle Scholar
  23. Kong FJ, Tang YW, Lou AF, Chen H, Xu LH, Zhang XM, Lu HS (2012b) Effects of isoflurane exposure during pregnancy on postnatal memory and learning in offspring rats. Mol Biol Rep 39(4):4849–4855.  https://doi.org/10.1007/s11033-011-1279-z CrossRefGoogle Scholar
  24. Krylova O, Herreros J, Cleverley KE, Ehler E, Henriquez JP, Hughes SM, Salinas PC (2002) WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 35(6):1043–1056CrossRefGoogle Scholar
  25. Kumari P, Kauser H, Wadhwa M, Roy K, Alam S, Sahu S, Kishore K, Ray K, Panjwani U (2018) Hypobaric hypoxia impairs cued and contextual fear memory in rats. Brain Res 1692:118–133.  https://doi.org/10.1016/j.brainres.2018.04.026 CrossRefGoogle Scholar
  26. Lambert C, Cisternas P, Inestrosa NC (2016) Role of Wnt signaling in central nervous system injury. Mol Neurobiol 53(4):2297–2311.  https://doi.org/10.1007/s12035-015-9138-x CrossRefGoogle Scholar
  27. Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127(3):457–467Google Scholar
  28. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375.  https://doi.org/10.1038/nature04108 CrossRefGoogle Scholar
  29. Liu H, Xu GH, Wang K, Cao JL, Gu EW, Li YH, Liu XS (2014) Involvement of GSK3beta/beta-catenin signaling in the impairment effect of ketamine on spatial memory consolidation in rats. Neurobiol Learn Mem 111:26–34.  https://doi.org/10.1016/j.nlm.2014.02.012 CrossRefGoogle Scholar
  30. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810.  https://doi.org/10.1146/annurev.cellbio.20.010403.113126 CrossRefGoogle Scholar
  31. Maguschak KA, Ressler KJ (2008) Beta-catenin is required for memory consolidation. Nat Neurosci 11(11):1319–1326.  https://doi.org/10.1038/nn.2198 CrossRefGoogle Scholar
  32. Maguschak KA, Ressler KJ (2011) Wnt signaling in amygdala-dependent learning and memory. J Neurosci 31(37):13057–13067.  https://doi.org/10.1523/JNEUROSCI.3248-11.2011 CrossRefGoogle Scholar
  33. McLeod F, Salinas PC (2018) Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 53:90–95.  https://doi.org/10.1016/j.conb.2018.06.003 CrossRefGoogle Scholar
  34. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432.  https://doi.org/10.1038/nrn845 CrossRefGoogle Scholar
  35. Oliva CA, Montecinos-Oliva C, Inestrosa NC (2018) Wnt signaling in the central nervous system: new insights in health and disease. Prog Mol Biol Transl Sci 153:81–130.  https://doi.org/10.1016/bs.pmbts.2017.11.018 CrossRefGoogle Scholar
  36. Packard M, Koo ES, Gorczyca M, Sharpe J, Cumberledge S, Budnik V (2002) The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111(3):319–330CrossRefGoogle Scholar
  37. Qu Q, Sun G, Murai K, Ye P, Li W, Asuelime G, Cheung YT, Shi Y (2013) Wnt7a regulates multiple steps of neurogenesis. Mol Cell Biol 33(13):2551–2559.  https://doi.org/10.1128/MCB.00325-13 CrossRefGoogle Scholar
  38. Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358.  https://doi.org/10.1146/annurev.neuro.31.060407.125649 CrossRefGoogle Scholar
  39. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110(3):628–637.  https://doi.org/10.1097/ALN.0b013e3181974fa2 CrossRefGoogle Scholar
  40. Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC et al (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98(1):145–158.  https://doi.org/10.1093/toxsci/kfm084 CrossRefGoogle Scholar
  41. Smith DM, Mizumori SJ (2006) Hippocampal place cells, context, and episodic memory. Hippocampus 16(9):716–729.  https://doi.org/10.1002/hipo.20208 CrossRefGoogle Scholar
  42. Viberg H, Ponten E, Eriksson P, Gordh T, Fredriksson A (2008) Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology 249(2-3):153–159.  https://doi.org/10.1016/j.tox.2008.04.019 CrossRefGoogle Scholar
  43. Weed MR, Bookbinder M, Polino J, Keavy D, Cardinal RN, Simmermacher-Mayer J, Cometa FN, King D, Thangathirupathy S, Macor JE, Bristow LJ (2016) Negative allosteric modulators selective for the NR2B subtype of the NMDA receptor impair cognition in multiple domains. Neuropsychopharmacology 41(2):568–577.  https://doi.org/10.1038/npp.2015.184 CrossRefGoogle Scholar
  44. Wey A, Knoepfler PS (2010) c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. Oncotarget 1(2):120–130.  https://doi.org/10.18632/oncotarget.116 CrossRefGoogle Scholar
  45. Xiao H, Liu B, Chen Y, Zhang J (2016) Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Dev Neurosci 48:38–49CrossRefGoogle Scholar
  46. Yu L, Liu Y, Yang H, Zhu X, Cao X, Gao J, Zhao H, Xu Y (2017) PSD-93 Attenuates amyloid-beta-mediated cognitive dysfunction by promoting the catabolism of amyloid-beta. J Alzheimers Dis 59(3):913–927.  https://doi.org/10.3233/JAD-170320 CrossRefGoogle Scholar
  47. Zhang L, Yang X, Yang S, Zhang J (2011) The Wnt /beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 33(1):1–8.  https://doi.org/10.1111/j.1460-9568.2010.7483.x CrossRefGoogle Scholar
  48. Zhang H, Sun XR, Wang J, Zhang ZZ, Zhao HT, Li HH, Ji MH, Li KY, Yang JJ (2016) Reactive oxygen species-mediated loss of phenotype of parvalbumin interneurons contributes to long-term cognitive impairments after repeated neonatal ketamine exposures. Neurotox Res 30(4):593–605.  https://doi.org/10.1007/s12640-016-9653-1 CrossRefGoogle Scholar
  49. Zhao T, Li Y, Wei W, Savage S, Zhou L, Ma D (2014) Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol Dis 68:145–155.  https://doi.org/10.1016/j.nbd.2014.02.009 CrossRefGoogle Scholar
  50. Zhao X, Sun Y, Ding Y, Zhang J, Li K (2018a) miR-34a inhibitor may effectively protect against sevoflurane-induced hippocampal apoptosis through the Wnt/beta-catenin pathway by targeting Wnt1. Yonsei Med J 59(10):1205–1213.  https://doi.org/10.3349/ymj.2018.59.10.1205 CrossRefGoogle Scholar
  51. Zhao H, Wang Y, Shao Y, Liu J, Wang S, Xing M (2018b) Oxidative stress-induced skeletal muscle injury involves in NF-kappaB/p53-activated immunosuppression and apoptosis response in copper (II) or/and arsenite-exposed chicken. Chemosphere 210:76–84.  https://doi.org/10.1016/j.chemosphere.2018.06.165 CrossRefGoogle Scholar
  52. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y, Xie Z (2013) Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118(3):516–526.  https://doi.org/10.1097/ALN.0b013e3182834d5d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xintong Zhang
    • 1
  • Jinghua Zhao
    • 1
  • Tian Chang
    • 1
  • Qi Wang
    • 1
  • Wenhan Liu
    • 1
  • Li Gao
    • 1
    Email author
  1. 1.College of Veterinary MedicineNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations