Advertisement

Partial characterization of the lipidome of the cold-water scallop, Chlamys islandica

  • Alejandra GilabertEmail author
  • Perrine Geraudie
  • Joaquim Jaumot
  • Cinta Porte
Research Article

Abstract

Fingerprinting of the main lipid components of the digestive gland of the Icelandic scallop—Chlamys islandica—has been performed by ultra-high-performance liquid chromatography coupled with time of flight high-resolution mass spectrometry, UHPLC-HRMS/ToF. This method allowed the identification of 224 lipids, including phosphatidylcholines (PC), plasmanyl (PC-O)/plasmenyl (PC-P) phosphatidylcholines, lyso-phosphatidylcholines (LPC), and their plasmanyl/plasmenyl forms (LPC-O/LPC-P). Diacylglycerols (DG), triacylglycerols (TG), and cholesteryl esters (CE) were the neutral lipids (NL) analyzed. While all of the lipids showed a strong seasonal dependence in terms of quantity, only NLs presented significant qualitative changes. Principal component analysis (PCA) of TG and DG profiles evidenced a prevalence of low unsaturated TGs and DGs in spring, which were replaced by species with a higher degree of unsaturations in summer. In autumn, long and highly unsaturated TGs constitute the lipid fraction of the digestive gland of the scallop, while DG species offer a mixed profile. This study contributes to the characterization and the elucidation of the lipidome of Chlamys islandica and provides baseline data for further study of the effects of pollutants on the lipidome of the Icelandic scallop, often used as a sentinel species in biomonitoring programs.

Keywords

Lipidomics Bivalves Digestive gland UHPLC-HRMS/ToF Seasonal variation 

Notes

Acknowledgments

The authors would like to thank Dr. J. Nahrgang from the University of Arctic in Tromsø for her contribution to this work by providing the digestive gland samples which were collected through the EWMA project (NRC #195160).

Funding information

This work was supported by the Spanish National Plan for Research (Project Ref. CGL2014-52144-P) and the “Hazardous substances” funding program from the Framcenter.

Supplementary material

11356_2019_6751_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1070 kb)

References

  1. Aranda-Burgos JA, da Costa F, Nóvoa S, Ojea J, Martínez-Patiño D (2014) Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 420–421:38–48CrossRefGoogle Scholar
  2. Arish M, Husein A, Kashif M, Sandhu P, Hasnain SE, Akhter Y, Rub A (2015) Orchestration of membrane receptor signaling by membrane lipids. Biochimie 113:111–124CrossRefGoogle Scholar
  3. Aubert AB, Svensen C, Hessen DO, Tamelander T (2013) CNP stoichiometry of a lipid-synthesising zooplankton, Calanus finmarchicus, from winter to spring bloom in a sub-Arctic sound. J Mar Syst 111–112:19–28CrossRefGoogle Scholar
  4. Banni M, Sforzini S, Balbi T, Corsi I, Viarengo A, Canesi L (2016) Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: a transcriptomic and immunohistochemical study. Environ Res 145:135–144CrossRefGoogle Scholar
  5. Bell MV, Sargent JR (1985) Fatty acid analyses of phosphoglycerides from tissues of the clam Chlamys islandica (Muller) and the starfish Ctenodiscus crispatus (Retzius) from Balsfjorden, Northern Norway. J Exp Mar Biol Ecol 87:31–40CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57: 289–300Google Scholar
  7. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, Fifth edn. W H Freeman, New York ISBN-10: 0-7167-3051-0Google Scholar
  8. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465CrossRefGoogle Scholar
  9. Brokordt KB, Guderley HE (2004) Energetic requirements during gonad maturation and spawning in scallops: sex differences in Chlamys islandica (Müller 1776). J Shellfish Res 1:25–32Google Scholar
  10. Casas J, Ibarguren M, Álvarez R, Terés S, Lladó V, Piotto SP, Concilio S, Busquets X, López DJ, Escribá PV (2017) G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim Biophys Acta Biomembr 1859:1526–1535CrossRefGoogle Scholar
  11. Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134–176CrossRefGoogle Scholar
  12. Crockett EL (1998) Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. Am Zool 38:291–304CrossRefGoogle Scholar
  13. Ernst R, Ejsing CS, Antonny B (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428:4776–4791CrossRefGoogle Scholar
  14. Ezgeta-Balić D, Najdek M, Peharda M, Blažina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334–337:89–100CrossRefGoogle Scholar
  15. Fernández-Reiriz MJ, Garrido JL, Irisarri J (2015) Fatty acid composition in Mytilus galloprovincialis organs: trophic interactions, sexual differences and differential anatomical distribution. Mar Ecol Prog Ser 528:221–234CrossRefGoogle Scholar
  16. Fokina NN, Bakhmet IN, Shklyarevich GA, Nemova NN (2014) Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea. Ecotoxicol Environ Saf 110:103–109CrossRefGoogle Scholar
  17. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  18. Garanto A, Mandal NA, Egido-Gabás M, Marfany G, Fabriàs G, Anderson RE, Casas J, Gonzàlez-Duarte R (2013) Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res 110:96–106CrossRefGoogle Scholar
  19. Geraudie P, Bakkemo R, Milinkovitch T, Thomas-Guyon H (2016) First evidence of marine diesel effects on biomarker responses in the Icelandic scallops, Chlamys islandica. Environ Sci Pollut Res 23:16504–16512CrossRefGoogle Scholar
  20. Guijarro Garcia E (2006) The fishery for Iceland scallop (Chlamys islandica) in the Northeast Atlantic. Adv Mar Biol 51:1–55CrossRefGoogle Scholar
  21. Hannam ML, Bamber SD, John Moody A, Galloway TS, Jones MB (2010) Immunotoxicity and oxidative stress in the Arctic scallop Chlamys islandica: effects of acute oil exposure. Ecotoxicol Environ Saf 73:1440–1448CrossRefGoogle Scholar
  22. Hazel J (1995) Thermal adaptations in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42CrossRefGoogle Scholar
  23. Kakela R, Hyvarinen H (1996) Site-specific fatty acid composition in adipose tissues of several northern aquatic and terrestrial mammals. Comp Biochem Physiol B Biochem Mol Biol 115:501–514CrossRefGoogle Scholar
  24. Lazzara R, Fernandes D, Faria M, López JF, Tauler R, Porte C (2012) Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: its modulation by clofibrate exposure. Sci Total Environ 432:195–201CrossRefGoogle Scholar
  25. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306CrossRefGoogle Scholar
  26. Martínez-Pita I, Sánchez-Lazo C, Ruíz-Jarabo I, Herrera M, Mancera JM (2012) Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel Mytilus galloprovincialis from cultivated populations in south Spain. Aquaculture 358–359:274–283CrossRefGoogle Scholar
  27. Marty Y, Delaunay F, Moal J, Samain JF (1992) Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J Exp Mar Biol Ecol 163:221–234CrossRefGoogle Scholar
  28. Mateos HT, Lewandowski PA, Su XQ (2010) Seasonal variations of total lipid and fatty acid contents in muscle, gonad and digestive glands of farmed Jade Tiger hybrid abalone in Australia. Food Chem 123:436–441CrossRefGoogle Scholar
  29. Meier W, Hovelsrud GG (2014) Arctic sea ice in tranformation: a review of recent observed changes and impacts on biology. Rev Geophys 53:1–33Google Scholar
  30. Mleiki A, Zaldibar B, Izagirre U, El Menif NT, Marigómez I (2018) Effects of dietary Pb and Cd and their combination on lysosomal and tissue-level biomarkers and histopathology in digestive gland of the land snail, Cantareus apertus (Born, 1778). Ecotoxicol Environ Saf 156:301–310CrossRefGoogle Scholar
  31. Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25:1819–1823CrossRefGoogle Scholar
  32. Murzina SA, Nefedova ZA, Falk-Petersen S, Ripatti PO, Ruokolainen TR, Pekkoeva SN, Nemova NN (2013) Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii. Int J Mol Sci 14:7048–7060CrossRefGoogle Scholar
  33. Nahrgang J, Brooks SJ, Evenset A, Camus L, Jonsson M, Smith TJ, Lukina J, Frantzen M, Giarratano E, Renaud PE (2013) Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)—implications for environmental monitoring in the Barents Sea. Aquat Toxicol 127:21–35CrossRefGoogle Scholar
  34. Perrat E, Couzinet-Mossion A, Fossi Tankoua O, Amiard-Triquet C, Wielgosz-Collin G (2013) Variation of content of lipid classes, sterols and fatty acids in gonads and digestive glands of Scrobicularia plana in relation to environment pollution levels. Ecotoxicol Environ Saf 90:112–120CrossRefGoogle Scholar
  35. Pirini M, Manzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V (2007) Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp Biochem Physiol B Biochem Mol Biol 147:616–626CrossRefGoogle Scholar
  36. Porte C, Solé M, Borghi V, Martínez M, Chamorro J, Torreblanca A, Ortiz M, Orbea A, Soto M, Cajaraville M (2001) Chemical, biochemical and cellular responses in the digestive gland of the mussel Mytilus galloprovincialis from the Spanish Mediterranean coast. Biomarkers 6:335–350CrossRefGoogle Scholar
  37. Sagerup K, Nahrgang J, Frantzen M, Larsen LH, Geraudie P (2016) Biological effects of marine diesel oil exposure in red king crab (Paralithodes camtschaticus) assessed through a water and foodborne exposure experiment. Mar Environ Res 119:126–135CrossRefGoogle Scholar
  38. Sandra K, Sandra P (2013) Lipidomics from an analytical perspective. Curr Opin Chem Biol 17:847–853CrossRefGoogle Scholar
  39. Sargent JR, Eilertsen HC, Falk-Petersen S, Taasen JP (1985) Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Mar Biol 85:109–116CrossRefGoogle Scholar
  40. Soudant P, Marty Y, Moal J, Robert R, Quéré C, Le Coz JR, Samain JF (1996) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378CrossRefGoogle Scholar
  41. Thorarinsdóttir G (1993) The Iceland scallop, Chlamys islandica (O.F. Müller), in Breidafjördur, West Iceland. II. Gamete development and spawning. Aquaculture 110:87–96CrossRefGoogle Scholar
  42. Tkatcheva V, Hyvärinen H, Kukkonen J, Ryzhkov LP, Holopainen IJ (2004) Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia. Ecotoxicol Environ Saf 57:278–289CrossRefGoogle Scholar
  43. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  44. Tran D, Sow M, Camus L, Ciret P, Berge J, Massabuau J-C (2016) In the darkness of the polar night, scallops keep on a steady rhythm. Sci Rep 6:32435CrossRefGoogle Scholar
  45. van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA (2011) LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 52:1211–1221CrossRefGoogle Scholar
  46. Vance DE, Vance JE (1996) Biochemistry of lipids, lipoproteins and membranes, First edn. Elsevier Science B.V ISBN: 0-444-82359-6Google Scholar
  47. Velansky PV, Kostetsky EY (2008) Lipids of marine cold-water fishes. Russ J Mar Biol 34:51–56CrossRefGoogle Scholar
  48. Ventrella V, Pagliarani A, Nesci S, Trombetti F, Pirini M (2013) Dietary enhancement of selected fatty acid biosynthesis in the digestive gland of Mytilus galloprovincialis Lmk. J Agric Food Chem 61:973–981CrossRefGoogle Scholar
  49. Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Chang Biol 17:1235–1249CrossRefGoogle Scholar
  50. Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111CrossRefGoogle Scholar
  51. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alejandra Gilabert
    • 1
    • 2
    Email author
  • Perrine Geraudie
    • 3
  • Joaquim Jaumot
    • 1
  • Cinta Porte
    • 1
  1. 1.Department of Environmental ChemistryIDAEA-CSICBarcelonaSpain
  2. 2.Facultad de CienciasUniversidad Nacional de Educación a Distancia, UNEDMadridSpain
  3. 3.Akvaplan-niva ASFram CentreTromsøNorway

Personalised recommendations