Advertisement

Study of organochlorine pesticides and heavy metals in soils of the Juarez valley: an important agricultural region between Mexico and the USA

  • José A. Núñez-GastélumEmail author
  • Stephanie Hernández-Carreón
  • Marcos Delgado-Ríos
  • Juan Pedro Flores-Marguez
  • María M. Meza-Montenegro
  • Claudia Osorio-Rosas
  • Keni Cota-Ruiz
  • Jorge L. Gardea-Torresdey
Research Article

Abstract

The Juarez Valley is an important agricultural region in northern Mexico, conveniently organized into three modules (I to III). For decades, their soils have been exposed to organochlorine pesticides (OCPs) and also have been irrigated with wastewaters, which may contain heavy metals. Nowadays, there is very limited information regarding the presence of OCPs and heavy metals in these soils. Thus, the aim of this study was to diagnose these soils for OCPs and heavy metal content by using gas chromatography coupled with electron micro-capture detector and atomic absorption spectrometry, respectively. The results indicated that 4,4′-dichlorodiphenyldichloroethylene and 4,4′-dichlorodiphenyltrichloroethane were primarily disseminated across the three modules since they were found in 100% and 97% of the analyzed soils, respectively. According to international regulations, none of the determined OCP concentrations are out of the limits. Additionally, the Cu, Zn, Fe, Pb, and Mn were found in all sampled soils from the three modules. The highest concentration of Fe was found in module II (1902.7 ± 332.2 mg kg−1), followed by Mn in module III (392.43 ± 74.43 mg kg−1), Zn in module I (38.36 ± 26.57 mg kg−1), Pb in module II (23.48 ± 6.48 mg kg−1), and Cu in module I (11.04 ± 3.83 mg kg−1) (p ≤ 0.05). These values did not exceed the limits proposed by international standards. The Cd was detected in most of the analyzed soils and all their values, with an average of 2 mg kg−1, surpassed the Mexican standards (0.35 mg kg−1). This study has mapped the main OCPs and heavy metals in the Juarez Valley and can serve as a starting point to further monitor the behave of xenobiotics. Since these recalcitrant compounds might be bio-accumulated in biological systems, further analytical methods, as well as remediation techniques, should be developed.

Keywords

Organochlorine pesticides Heavy metals Soil pollution DDT Agricultural soil Cadmium 

Notes

Acknowledgments

J.A.N-G is grateful to Universidad Autónoma de Ciudad Juárez for providing facilities for the realization of this study. S.R-C wish to thank CONACYT for the master degree scholarship granted.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324.  https://doi.org/10.1016/j.chemosphere.2011.07.046 CrossRefGoogle Scholar
  2. Adagunodo TA, Sunmonu LA, Emetere ME (2018) Heavy metals’ data in soils for agricultural activities. Data Brief 18:1847–1855.  https://doi.org/10.1016/j.dib.2018.04.115 CrossRefGoogle Scholar
  3. Adeyeye A, Osibanjo O (1999) Residues of organochlorine pesticides in fruits, vegetables and tubers from Nigerian markets. Sci Total Environ 231:227–233.  https://doi.org/10.1016/S0048-9697(99)00067-4 CrossRefGoogle Scholar
  4. Afzal M, Shabir G, Iqbal S, Mustafa T, Khan Q, Khalid Z (2012) Assessment of heavy metal contamination in soil and groundwater at Leather Industrial Area of Kasur, Pakistan. Clean-Soil Air Water 42:1133–1139.  https://doi.org/10.1002/clen.201100715 CrossRefGoogle Scholar
  5. Al-Farraj AS, Al-Wavel MI (2007) Heavy metals accumulation of some plant species grown on mining area at Mahad AD’Dahab, Saudi Arabia. J Appl Sci 7:1170–1175.  https://doi.org/10.3923/jas.2007.1170.1175 CrossRefGoogle Scholar
  6. Androutsopoulos V, Hernandez AF, Leiesivuori J, Tsatsakis AM (2013) A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94.  https://doi.org/10.1016/j.tox.2012.09.011 CrossRefGoogle Scholar
  7. Cantú-Soto EU, Meza-Montenegro MM, Valenzuela-Quintanar AI, Félix-Fuentes A, Grajeda-Cota P, Balderas-Cortes JJ, Osorio-Rosas CL, Acuña-García G, Aguilar-Apodaca MG (2011) Residues of organochlorine pesticides in soils from the Southern Sonora, Mexico. Bull Environ Contam Toxicol 87:556–560.  https://doi.org/10.1007/s00128-011-0353-5 CrossRefGoogle Scholar
  8. Carpenter JW, Andrews GA, Beyer WN (2004) Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator). J Wildl Dis 40:769–774.  https://doi.org/10.7589/0090-3558-40.4.769 CrossRefGoogle Scholar
  9. Carreira V, Gadsen BJ, Harrison TM, Braselton E, Fitzgerald S (2011) Pancreatic atrophy due to zinc toxicosis in two African ostriches (Struthio camelus). J Zoo Wildl Med 42:304–308.  https://doi.org/10.1638/2010-0146.1 CrossRefGoogle Scholar
  10. Chakraborty P, Zhang G, Li J, Sivakumar A, Jones K (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air-soil exchange. Environ Pollut 204:74–80.  https://doi.org/10.1016/j.envpol.2015.04.006 CrossRefGoogle Scholar
  11. Cota-Ruiz K, Hernández-Viezcas JA, Varela-Ramírez A, Valdés C, Núñez-Gastélum JA, Martínez-Martínez A, Delgado-Rios M, Peralta-Videa JR, Gardea-Torresdey JL (2018) Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expressionstudy. Environ Pollut 243:703–712.  https://doi.org/10.1016/j.envpol.2018.09.028 CrossRefGoogle Scholar
  12. Cota-Ruiz K, Lopez de los Santos Y, Hernandez-Viezcas JA, Delgado-Rios M, Peralta-Videa JR, Gardea-Torresdey JL (2019) A comparative metagenomic and spectroscopic analysis of soils from an international point of entry between the US and Mexico. Environ Int 123:558–566.  https://doi.org/10.1016/j.envint.2018.12.055 CrossRefGoogle Scholar
  13. Díaz-Barriga F, Trejo-Acevedo A, Betanzos AF, Espinosa-Reyes G, Alegría-Torres JA, Pérez IN (2012) Assessment of DDT and DDE levels in soil, dust, and blood samples from Chihuahua, Mexico. Arch Environ Contam Toxicol 65:351–358.  https://doi.org/10.1007/s00244-011-9700-0 CrossRefGoogle Scholar
  14. Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L, Gatti S, Girelli D, Cairo G, Magni P, Fargion S, Valenti L (2013) Dietary iron overload induces visceral adipose tissue insulin resistance. Am J Pathol 182:2254–2236.  https://doi.org/10.1016/j.ajpath.2013.02.019 CrossRefGoogle Scholar
  15. FAO (2000) Assessing soil contamination. A reference manual. http://www.fao.org/3/X2570E/X2570E00.htm.
  16. Flores-Magdaleno H, Mancilla-Villa O, Mejía-Saenz E, Olmedo-Bolaños M, Bautista-Olivas L (2011) Heavy metals in agricultural soils and Irrigation wastewater of Mixquiahuala, Hidalgo, Mexico. Afr J Agric Res 6:5505–5511.  https://doi.org/10.5897/AJAR11.414 CrossRefGoogle Scholar
  17. González O, Gómez-Bernal J, Ruíz-Huerta A (2012) Plants and soil contamination with heavy metals in agricultural areas of Guadalupe, Zacatecas, Mexico. In: Srivastra J (ed) Environmental Contamination. In Tech, Shanghai, China, pp 41–42Google Scholar
  18. Grondona SI, Gonzalez M, Martínez DE, Massone HE, Miglioranza KS (2019) Assessment of organochlorine pesticides in phreatic aquifer of Pampean Region, Argentina. Bull Environ Contam Toxicol 102:544–549.  https://doi.org/10.1007/s00128-019-02584-3 CrossRefGoogle Scholar
  19. Han Y, Mo R, Yuan X, Zhong D, Tang F, Ye C, Liu Y (2017) Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere 180:42–47.  https://doi.org/10.1016/j.chemosphere.2017.03.138 CrossRefGoogle Scholar
  20. INEGI (1999) Estudio hidrológico del Estado de Chihuahua. National Institute of Statistics and Geography. Ciudad de Mexico, MexicoGoogle Scholar
  21. INEGI (2003) Síntesis de Información Geográfica del Estado de Chihuahua. National Institute of Statistics and Geography. Ciudad de Mexico, MexicoGoogle Scholar
  22. Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. Int J Environ Res Public Health 13:663–673.  https://doi.org/10.3390/ijerph13070663 CrossRefGoogle Scholar
  23. King K, Zaun B, Schotborgh M, Hurt K (2003) DDE-Induced eggshell thinning in White-faced ibis: a continuing problem in the Western United States. Southwest Nat 48:356–364CrossRefGoogle Scholar
  24. Kulangaravalappil N, Chenicherry S (2018) Fate and distribution of organochlorine insecticides (OCIs) in Palakkad soil, India. Sust Environ Res 28:179–185.  https://doi.org/10.1016/j.serj.2018.01.007 CrossRefGoogle Scholar
  25. Kwon JC, Nejad Z, Jung M (2017) Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena 148:92–100.  https://doi.org/10.1016/j.catena.2016.01.005 CrossRefGoogle Scholar
  26. Leal SSD, Valenzuela QAI, Gutiérrez CML, Bermúdez AMC, García HJ, Aldana MML, Grajeda CP, Silveira GMI, Meza MMM, Palma DSA, Leyva GGN, Camarena GBO, Valenzuela NCP (2014) Residuos de plaguicidas organoclorados en suelos agrícolas. Terra Latinoam 32:1–11Google Scholar
  27. Li Z (2018) Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis. J Environ Manag 205:163–173.  https://doi.org/10.1016/j.jenvman.2017.09.070 CrossRefGoogle Scholar
  28. Liu O, Wang Q, Xu C, Shao W, Zhang C, Liu H, Jiang Z, Gu A (2017) Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Sci Rep 7:46339–46350.  https://doi.org/10.1038/srep46339 CrossRefGoogle Scholar
  29. Mahmood A, Malik RN, Li J, Zhang G (2014) Human health risk assessment and dietary intake of organochlorine pesticides through air, soil and food crops (wheat and rice) along two tributaries of river Chenab, Pakistan. Food Chem Toxicol 71:17–25.  https://doi.org/10.1016/j.fct.2014.05.008 CrossRefGoogle Scholar
  30. Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Yango Z, Ayoko G, Frost R, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 175:339–348.  https://doi.org/10.1016/j.catena.2018.12.029 CrossRefGoogle Scholar
  31. Martin AP, Turnbull RE, Rissmann CW, Rieger P (2017) Heavy metal and metalloid concentrations in soils under pasture of southern New Zealand. Geoderma Reg 11:18–27.  https://doi.org/10.1016/j.geodrs.2017.08.005 CrossRefGoogle Scholar
  32. Meza-Figueroa D, de la O-Villanueva M, de la Parra ML (2007) Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ 41:276–288.  https://doi.org/10.1016/j.atmosenv.2006.08.034 CrossRefGoogle Scholar
  33. Ming Y (2011) Environmental toxicology: biological and health effects of pollutants. CRC Press, FloridaGoogle Scholar
  34. Naghipour D, Davoud S, Tghavi K (2018) Data of heavy metals in soil and ground wáter at kiwi gardens of Amlash in Guilan Province, Iran. Data Brief 18:1556–1561.  https://doi.org/10.1016/j.dib.2018.04.046 CrossRefGoogle Scholar
  35. Palomo-Rodríguez M, Anaya SA, Rivera GM, Martínez RJG, Reyes GA (2013) Plaguicidas organoclorados en agua residual sometida a un proceso de dilución al mezclarse con fuentes alternativas de abastecimiento. Agrofaz 13:67–72Google Scholar
  36. Qu C, Albanese S, Chen W, Lima A, Doherty AL, Piccolo A, Arienzo M, Qi S, de Vivo B (2016) The status of organochlorine pesticides contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environ Pollut 216:500–511.  https://doi.org/10.1016/j.envpol.2016.05.089 CrossRefGoogle Scholar
  37. Raloff J (1995) Beyond Estrogens. Why unmasking hormone-mimicking pollutants proves so challenging. Sci News 148:44–47.  https://doi.org/10.2307/3979492 CrossRefGoogle Scholar
  38. Rosenbaum PF, Weinstock RS, Silverstone AE, Sjödin A, Pavuk M (2017) Metabolic syndrome is associated with exposure to organochlorine pesticides in Anniston, AL, United States. Environ Int 108:11–21.  https://doi.org/10.1016/j.envint.2017.07.017 CrossRefGoogle Scholar
  39. Salihovic S, Ganna A, Fall T, Broeckling CD, Perenni JE, van Bavel B, Lind PM, Ingelsson E, Lind L (2016) The metabolic fingerprint of p,p′-DDE and HCB exposure in humans. Environ Int 88:60–66.  https://doi.org/10.1016/j.envint.2015.12.015 CrossRefGoogle Scholar
  40. Stockholm Convention (2004) Stockholm Convention on persistent organic pollutions (POPs). http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx.
  41. Suda A, Makino T (2016) Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma 270:68–75.  https://doi.org/10.1016/j.geoderma.2015.12.017 CrossRefGoogle Scholar
  42. Sun K, Zhao Y, Gao B, Lio X, Zhang Z, Xing B (2009) Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China: levels, inventory and fate. Chemosphere 77:1199–1205.  https://doi.org/10.1016/j.chemosphere.2009.09.016 CrossRefGoogle Scholar
  43. Tan W, Gao Q, Deng C, Wang Y, Lee W-L, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Foliar exposure of Cu (OH)2 nanopesticide to basil (Ocimum basilicum): variety-dependent copper translocation and biochemical responses. J Agric Food Chem 66:3358–3366.  https://doi.org/10.1021/acs.jafc.8b00339 CrossRefGoogle Scholar
  44. Tarcau D, Cucu-Man S, Burukova J, Klanova J, Covaci A (2013) Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania. Sci Total Environ 456–457:317–324.  https://doi.org/10.1016/j.scitotenv.2013.03.103 CrossRefGoogle Scholar
  45. Tsai WT (2010) Current status and regulatory aspects of pesticides considered to be persistent organic pollutants (POPs) in Taiwan. Int J Environ Res Public Health 7:3615–3627.  https://doi.org/10.3390/ijerph7103615 CrossRefGoogle Scholar
  46. Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V, Hendrix J, Mascagni JHJ, Ying T, Kandakji T (2015) Implications of leading crop production practices on environmental quality and human health. J Environ Manag 151:267–279.  https://doi.org/10.1016/j.jenvman.2014.11.024 CrossRefGoogle Scholar
  47. US EPA (2016) DDT regulatory history: a brief survey (to 1975). U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  48. Vella V, Malaguarnera R, Lappano R, Maggilioni M, Belfiore A (2017) Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Mol Cell Endocrinol 457:57–72.  https://doi.org/10.1016/j.mce.2016.10.020 CrossRefGoogle Scholar
  49. Wong F, Alegria H, Jantunen L, Bidleman T, Salvador-Figueroa M, Gold-Bouchot G, Ceja-Moreno V, Waliszewsky S, Infanzo R (2008) Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos Environ 42:7737–7745.  https://doi.org/10.1016/j.atmosenv.2008.05.028 CrossRefGoogle Scholar
  50. Xiao R, Wang S, Li R, Wang J, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24.  https://doi.org/10.1016/j.ecoenv.2017.03.002 CrossRefGoogle Scholar
  51. Xu X, Chen C, Wang P, Kretzschmar R, Zhao FJ (2017) Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ Pollut 231:37–47.  https://doi.org/10.1016/j.envpol.2017.07.084 CrossRefGoogle Scholar
  52. Yorifuji T, Tsuda T, Inoue S, Takao S, Harada M (2011) Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan. Environ Int 37:907–913.  https://doi.org/10.1016/j.envint.2011.03.008 CrossRefGoogle Scholar
  53. Zang F, Wang S, Nan Z, Nan Z, Ma J, Zhang Q, Chen Y, Li Y (2017) Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, Northwest China. Geoderma 305:188–196.  https://doi.org/10.1016/j.geoderma.2017.06.008 CrossRefGoogle Scholar
  54. Zhang A, Chen Z, Ahrens L, Liu W, Li Y-F (2012) Concentrations of DDTs and enantiomeric fractions of chiral DDTs in agricultural soils from Zhejiang Province, China, and correlations with total organic carbon and pH. J Agric Food Chem 60:8294–8301.  https://doi.org/10.1021/jf3024547 CrossRefGoogle Scholar
  55. Zhang A, Luo E, Sun J, Xiao H, Liu W (2015) Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables. Sci Total Environ 505:1142–1147.  https://doi.org/10.1016/j.scitotenv.2014.11.023 CrossRefGoogle Scholar
  56. Zhou Q, Wang J, Meng B, Cheng J, Lin G, Chen J, Zheng D, Yu Y (2013) Distribution and sources of organochlorine pesticides in agricultural soils from central China. Ecotoxicol Environ Saf 93:163–170.  https://doi.org/10.1016/j.ecoenv.2013.03.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • José A. Núñez-Gastélum
    • 1
    Email author
  • Stephanie Hernández-Carreón
    • 1
  • Marcos Delgado-Ríos
    • 1
  • Juan Pedro Flores-Marguez
    • 1
  • María M. Meza-Montenegro
    • 2
  • Claudia Osorio-Rosas
    • 2
  • Keni Cota-Ruiz
    • 3
    • 4
  • Jorge L. Gardea-Torresdey
    • 3
    • 4
    • 5
    • 6
  1. 1.Departamento de Ciencias Químico Biológicas, Instituto de Ciencias BiomédicasUniversidad Autónoma de Ciudad JuárezChihuahuaMéxico
  2. 2.Departamento de Biotecnología y Ciencias AlimentariasInstituto Tecnológico de SonoraSonoraMéxico
  3. 3.Department of Chemistry and BiochemistryThe University of Texas at El PasoEl PasoUSA
  4. 4.UC Center for Environmental Implications of Nanotechnology (UC CEIN)The University of Texas at El PasoEl PasoUSA
  5. 5.Environmental Science and Engineering Ph.D. programThe University of Texas at El PasoEl PasoUSA
  6. 6.NSF-ERC Nanotechnology-Enabled Water Treatment Center (NEWT)HoustonUSA

Personalised recommendations