Advertisement

Adsorption of CO2 on amine-functionalized green metal-organic framework: an interaction between amine and CO2 molecules

  • Ayesha Rehman
  • Sarah FarrukhEmail author
  • Arshad Hussain
  • Xianfeng Fan
  • Erum Pervaiz
Research Article
  • 105 Downloads

Abstract

The efficient capture of CO2 is a critical problem for porous adsorbents. The inadequacy of conventional adsorbents has low adsorption capacity towards CO2 removal. Metal organic frame work has been considered as very effective for CO2 adsorption as it shows higher rate of CO2 adsorption at room temperature. In conventional amine processes, a comparatively high energy penalty is required, whereas a novel class of metal-organic framework by the combination of amine solvent have improve the potential of adsorption process and also the efficiency of separation. Amine-functionalized MOFs become more fascinated due to strong interaction between carbon dioxide and amine-functionalized MOF. A renewable green γCD-MOF was synthesized by using vapor diffusion method. Post-synthetic modification of γCD-MOF was done with piperazine and analyzed to expose its crystalline structure, morphology, and porous structure. The main aim of this paper is to enhance the CO2 adsorption by functionalization of inexpensive, green, nanoporous γCD-MOF and also to highlight the effects of amine-based functionalization towards potential application. Gravimetric CO2 adsorption isotherms for γCD-MOF, pip-γCD-MOF are reported up to 60 °C and found to follow a pseudo-second-order reaction. The pip-γCD-MOF confirms comparatively increased rapid adsorption rate of CO2 than that of γCD-MOF and desorption of CO2, and need less energy for regeneration. These results are the complete evidence of piperazine as an efficient amine group for increasing the CO2 adsorption uptake capacity.

Keywords

Flue gases Carbon dioxide Metal-organic frameworks pip-γCD-MOF Gas adsorption Pseudo models 

Notes

Acknowledgments

We like to acknowledge the support of MEMAR Lab at SCME, NUST.

References

  1. Abucafy MP, Caetano BL, Chiari-ABG F-SB, Do AM, Chorilli M, Chiavacci LA (2018) Supramolecular cyclodextrin-based metal-organic framework as efficient carriers for anti-inflammatory drugs. Eur J Pharm Biopharm 127:112–119CrossRefGoogle Scholar
  2. Aijaz A, Fujiwara N, Xu Q (2014) From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136:6790–6793.  https://doi.org/10.1021/ja5003907 CrossRefGoogle Scholar
  3. Arstad B, Fjellvag H, Kongshaug KO, Swang O, Blom R (2008) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14:755–762CrossRefGoogle Scholar
  4. Badr-Eldin SM, Ahmed TA, Ismail HR (2013) Aripiprazole-cyclodextrin binary systems for dissolution enhancement: effect of preparation technique, cyclodextrin type and molar ratio. Iran J Basic Med Sci 16:1223Google Scholar
  5. Bao Z, Yu L, Ren Q, Lu X, Deng S (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 35:549–556CrossRefGoogle Scholar
  6. Cheng L et al (2018) Controllable adsorption of CO2 on smart adsorbents: an interplay between amines and photoresponsive molecules. Chem Mater 30:3429–3437.  https://doi.org/10.1021/acs.chemmater.8b01005 CrossRefGoogle Scholar
  7. Choi S, Watanabe T, Bae TH, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3:1136–1141.  https://doi.org/10.1021/jz300328j CrossRefGoogle Scholar
  8. Chowdhury P, Bikkina C, Gumma S (2009) Gas adsorption properties of the chromium-based metal organic framework MIL-101. J Phys Chem C 113:6616–6621CrossRefGoogle Scholar
  9. Eddaoudi M, Kim J, Rosi N, et al. (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science :295:469–472CrossRefGoogle Scholar
  10. Fan X, Parker DJ, Smith MD (2003) Adsorption kinetics of fluoride on low cost materials. Water Res 37:4929–4937.  https://doi.org/10.1016/j.watres.2003.08.014 CrossRefGoogle Scholar
  11. Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li Q, Wilmer CE, Botros YY, Snurr RQ, Slawin AM, Stoddart JF (2012) Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc 134:406–417.  https://doi.org/10.1021/ja208224f CrossRefGoogle Scholar
  12. Freeman SA, Dugas R, Van Wagener D, Nguyen T, Rochelle GT (2009) Carbon dioxide capture with concentrated, aqueous piperazine. Energy Procedia 1:1489–1496.  https://doi.org/10.1016/j.egypro.2009.01.195 CrossRefGoogle Scholar
  13. Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, Stoddart JF (2011) Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc 133:15312–15315.  https://doi.org/10.1021/ja206525x CrossRefGoogle Scholar
  14. Goeppert A, Czaun M, May RB, Prakash GK, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167.  https://doi.org/10.1021/ja2100005 CrossRefGoogle Scholar
  15. Hafeez S, Fan X, Hussain A, Martín CF (2015) CO2 adsorption using TiO2 composite polymeric membranes: a kinetic study. J Environ Sci 35:163–171.  https://doi.org/10.1016/j.jes.2015.04.019 CrossRefGoogle Scholar
  16. Hartlieb KJ, Peters AW, Wang TC, Deria P, Farha OK, Hupp JT, Stoddart JF (2013) Functionalised cyclodextrin-based metal-organic frameworks. Chem Commun 53:7561–7564.  https://doi.org/10.1039/C7CC03345A CrossRefGoogle Scholar
  17. Hartlieb KJ, Holcroft JM, Moghadam PZ, Vermeulen NA, Algaradah MM, Nassar MS, Botros YY, Snurr RQ, Stoddart JF (2016) CD-MOF: a versatile separation medium. J Am Chem Soc 138:2292–2301.  https://doi.org/10.1021/jacs.5b12860 CrossRefGoogle Scholar
  18. Hendon CH, Rieth AJ, Korzynski MD, Dinca M (2017) Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci 3:554–563.  https://doi.org/10.1021/acscentsci.7b00197 CrossRefGoogle Scholar
  19. Ho MT (2017) Studies of the encapsulation and release of carbon dioxide from amorphous and crystalline alpha-cyclodextrin powders and its application in food systems. PhD Thesis.The university of Queensland AustraliaGoogle Scholar
  20. Huelsenbeck L, Westendorff K, Gu Y, Marino S, Jung S, Epling W (2019) Modulating and orienting an anisotropic Zn-based metal organic framework for selective CH4/CO2 gas separation. Crystals 9:20.  https://doi.org/10.3390/cryst9010020 CrossRefGoogle Scholar
  21. Jackson P, Robinson K, Puxty G, Attalla M (2009) In situ Fourier transform-infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. Energy Procedia 1:985–994.  https://doi.org/10.1016/j.egypro.2009.01.131 CrossRefGoogle Scholar
  22. Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn (BCD) (BCD=1,4-benzenedicarboxylate). J Am Chem Soc 120:8571–8572.Google Scholar
  23. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276.  https://doi.org/10.1038/46248 https://www.nature.com/articles/46248#supplementary-information CrossRefGoogle Scholar
  24. Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823CrossRefGoogle Scholar
  25. Lin Y, Kong C, Chen L (2016) Amine-functionalized metal-organic frameworks: structure, synthesis and applications. RSC Adv 6:32598–32614.  https://doi.org/10.1039/C6RA01536K CrossRefGoogle Scholar
  26. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev 41:2308–2322.  https://doi.org/10.1039/c1cs15221a CrossRefGoogle Scholar
  27. Liu B et al (2016) Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. Int J Pharm 514:212–219.  https://doi.org/10.1016/j.ijpharm.2016.09.029 CrossRefGoogle Scholar
  28. Liu B et al (2017) Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst Growth Des 17:1654–1660.  https://doi.org/10.1021/acs.cgd.6b01658 CrossRefGoogle Scholar
  29. Mason JA, Sumida K, Herm ZR, Krishna R, Long JR (2011) Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4:3030–3040CrossRefGoogle Scholar
  30. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065.  https://doi.org/10.1021/ja300034j CrossRefGoogle Scholar
  31. Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRefGoogle Scholar
  32. Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84.  https://doi.org/10.1016/j.vibspec.2012.05.002 CrossRefGoogle Scholar
  33. Pradip Chowdhury CB, Gumma S (2009) Gas adsorption properties of the chromium-based metal organic framework MIL-101. J Phys Chem C 113:6616–6621CrossRefGoogle Scholar
  34. Rehman A, Farrukh S, Hussain A, Pervaiz E (2019) Synthesis and effect of metal–organic frame works on CO2 adsorption capacity at various pressures: A contemplating review. Energy Environ.  https://doi.org/10.1177/0958305X19865352
  35. Sabouni R (2013) Carbon dioxide adsorption by metal organic frameworks (Synthesis, Testing and Modeling). Micropor Mesopor Sci 175:85CrossRefGoogle Scholar
  36. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, Stoddart JF (2010) Metal-organic frameworks from edible natural products. Angew Chem Int Ed 49:8630–8634.  https://doi.org/10.1002/anie.201002343 CrossRefGoogle Scholar
  37. Smith MK, Angle SR, Northrop BH (2015) Preparation and analysis of cyclodextrin-based metal–organic frameworks: laboratory experiments adaptable for high school through advanced undergraduate students. J Chem Educ 92:368–372.  https://doi.org/10.1021/ed500540t CrossRefGoogle Scholar
  38. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH (2011) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781.  https://doi.org/10.1021/cr2003272 CrossRefGoogle Scholar
  39. Verma S, Mishra AK, Kumar J (2010) The many facets of adenine: coordination, crystal patterns, and catalysis. Acc Chem Res 43:79–91.  https://doi.org/10.1021/ar9001334 CrossRefGoogle Scholar
  40. Xu X, Song C, Miller BG, Scaroni AW (2005) Influence of moisture on CO2 Separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44:8113–8119.  https://doi.org/10.1021/ie050382n CrossRefGoogle Scholar
  41. Xu X, Wang C, Li H, Li X, Liu B, Singh V, Wang S, Sun L, Gref R, Zhang J (2017) Evaluation of drug loading capabilities of gamma-cyclodextrin-metal organic frameworks by high performance liquid chromatography. J Chromatogr A 1488:37–44.  https://doi.org/10.1016/j.chroma.2017.01.062 CrossRefGoogle Scholar
  42. Yang K, Xu M-J, Li B (2013) Synthesis of N-ethyl triazine–piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym Degrad Stab 98:1397–1406.  https://doi.org/10.1016/j.polymdegradstab.2013.03.023 CrossRefGoogle Scholar
  43. Yazaydin AO, Snurr RQ, Park TH, Koh K, Liu J (2009) Screening of metal-organic frameworks for carbondioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131:18198–18199Google Scholar
  44. Zhao Z, Li Z, Lin YS (2009) Adsorption and diffusion of carbon dioxide on metal−organic framework (MOF-5). Ind Eng Chem Res 48:10015–10020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ayesha Rehman
    • 1
  • Sarah Farrukh
    • 1
    Email author
  • Arshad Hussain
    • 1
  • Xianfeng Fan
    • 2
  • Erum Pervaiz
    • 1
  1. 1.Department of Chemical Engineering, School of Chemical and Materials EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Chemical Engineering DepartmentUniversity of EdinburghEdinburghUK

Personalised recommendations