Advertisement

Physiological damages of Sargassum cymosum and Hypnea pseudomusciformis exposed to trace metals from mining tailing

  • Giulia Burle Costa
  • Fernanda Ramlov
  • Bruna de Ramos
  • Gabrielle Koerich
  • Lidiane Gouvea
  • Patrícia Gomes Costa
  • Adalto Bianchini
  • Marcelo Maraschin
  • Paulo A. HortaJrEmail author
Research Article
  • 58 Downloads

Abstract

The damages of Mariana’s mining mud in the physiology of the brown algae Sargassum cymosum and its main epiphytic, the red algae Hypnea pseudomusciformis, were evaluated by controlled essays. Seaweeds were exposed to presence or absence of mud, isolated or in biological association, for 5 and 15 days. Measured parameters were growth rates, biochemical descriptors, and the chemical investigation of concentration and metal profile of the mud dissolved in seawater. Results showed that the highest values for metals were Al > Fe > Mn > Zn in both exposure periods. The mud also affected the growth rate with lethality in both isolated and associative treatments with H. pseudomusciformis after 15 days. According to our redundancy analysis (RDA), the profile and concentration of all metallic elements can induce different physiological responses of the organisms. We were able to observe a higher physiological adaptive ability of S. cymosum against the long-term presence of metals by the synthesis of phenolic compounds, while the deviation of metabolic routes in H. pseudomusciformis can be addressed as the main responsible for its lethality. Moreover, the presence of Hypnea in associative treatments reduces Sargassum’s detoxification ability. The present results reinforce the importance of biological interaction studies in a context of physiological resilience against mining mud pollution and mutual influences of species over the individual ability to avoid oxidative stress.

Keywords

Benthic ecology Biochemical markers Mariana’s mining residuals Physiological damages Pollution tolerance Trace metals 

Notes

Acknowledgments

Giulia Burle Costa would like to thank for infrastructural and technical collaboration from Vegetal Morphogenesis and Biochemistry Laboratory (LMBV, CCA – UFSC) and Ecotoxicology Laboratory (ICB – FURG) for supporting analyses.

Author contributions

The authors declare that all contributed equally for the research and/or manuscript preparation, and that also have approved the final format of present work prior to submission. The role of each author in this work is described below:

• Giulia Burle Costa: experimental work execution and manuscript preparation;

• Fernanda Ramlov: biochemical analyses collaboration and manuscript preparation;

• Bruna Ramos: experimental work execution and manuscript preparation;

• Gabrielle Koerich: experimental work execution and manuscript preparation;

• Lidiane Gouvea: experimental work execution;

• Patrícia Gomes Costa: chemical analyses collaboration and manuscript preparation;

• Adalto Bianchini: manuscript preparation;

• Marcelo Maraschin: biochemical analyses collaboration and manuscript preparation;

• Paulo A. Horta: project proposition, experimental work collaboration, and manuscript preparation.

Funding information

This work was supported by grants from the Boticário Foundation (1051-20152); FAPESC-Foundation support research and innovation in the State of Santa Catarina; Long-term Program of Ecological Research - Coastal Habitats of Espírito Santo State (PELD, CNPq grant 441243/2016-9); CNPq-National Council for Scientific and Technological Development (CNPq 306917/2009-2 to P.A. Horta Jr.); Capes-Higher Education Personnel Improvement Coordination (CAPES/PNADB 2338000071/2010-61 to P.A. Horta); Rede Clima- Brazilian Research Network on Global Climate Change; REBENTOS-Habitat monitoring network coastal Benthic and ProspecMar-Islands-Sustainable prospecting in Ocean Islands: Biodiversity, Chemistry, Ecology and Biotechnology; and Petrobras Ambiental, Rede Coral Vivo and REDEALGAS and FAPESP-Foundation support research and innovation in the State of São Paulo (FAPESP, 2014/00012-1). Giulia Burle Costa received a fellowship from CNPq for Sandwich PhD Program (CNPq process 202271/2018-8) and a fellowship from CAPES. Gabrielle Koerich received a fellowship from CAPES.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_6691_MOESM1_ESM.docx (26 kb)
ESM 1 (DOCX 25 kb)

References

  1. Agardh, C.A. (1820) Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis. Volumen primum. Pars prima. pp. [i-iv], [1]- 168. Lundae [Lund]: ex officina Berlingiana.Google Scholar
  2. Akcali I, Kucuksezgin F (2011) A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Mar Pollut Bull 62:637–645.  https://doi.org/10.1016/j.marpolbul.2010.12.021 CrossRefGoogle Scholar
  3. Almada CHBA, Yoneshigue-Valetin Y, CAG N (2008) Aspectos populacionais de Sargassum vulgare C. Agardh (Ochrophyta, Fucales) na Ponta do Arpoador - Rio de Janeiro. Oecologia Aust 12:291–298.  https://doi.org/10.4257/oeco.2008.1202.10 CrossRefGoogle Scholar
  4. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS One 7:e35171.  https://doi.org/10.1371/journal.pone.0035171 CrossRefGoogle Scholar
  5. Aman R, Carle R, Conrad J et al (2005) Isolation of carotenoids from plant materials and dietary supplements by high-speed counter-current chromatography. J Chromatogr A.  https://doi.org/10.1016/j.chroma.2005.03.055 CrossRefGoogle Scholar
  6. Angel BM, Apte SC, Batley GE, Golding LA (2016) Geochemical controls on aluminium concentrations in coastal waters. Environ Chem 13:111.  https://doi.org/10.1071/EN15029 CrossRefGoogle Scholar
  7. Aued AW, Smith F, Quimbayo JP, Cândido DV, Longo GO, Ferreira CEL, Witman JD, Floeter SR, Segal B (2018) Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS One 13:e0198452.  https://doi.org/10.1371/journal.pone.0198452 CrossRefGoogle Scholar
  8. Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785.  https://doi.org/10.1016/j.foodchem.2012.11.026 CrossRefGoogle Scholar
  9. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  10. Bouzon ZL, Ferreira EC, dos Santos R, Scherner F, Horta PA, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249:637–650.  https://doi.org/10.1007/s00709-011-0301-6 CrossRefGoogle Scholar
  11. Brady JP, Ayoko GA, Martens WN, Goonetilleke A (2015) Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ Monit Assess 187.  https://doi.org/10.1007/s10661-015-4563-x
  12. Britton G, Liaaen-Jensen S, Pfander H (2008) Carotenoids, vol 4: Natural functions. Springer Science & Business Media, GermanyCrossRefGoogle Scholar
  13. Chakraborty S, Bhattacharya T, Singh G, Maity JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf 100:61–68.  https://doi.org/10.1016/j.ecoenv.2013.12.003 CrossRefGoogle Scholar
  14. Chapman ARO (1987) Population and community ecology of seaweeds. Adv Mar Biol 23:1–161.  https://doi.org/10.1016/S0065-2881(08)60108-X CrossRefGoogle Scholar
  15. Choi HG, Lee KH, Yoo H II et al (2008) Physiological differences in the growth of Sargassum horneri between the germling and adult stages. J Appl Phycol 20:729–735.  https://doi.org/10.1007/s10811-007-9281-5 CrossRefGoogle Scholar
  16. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832.  https://doi.org/10.1104/pp.123.3.825 CrossRefGoogle Scholar
  17. Costa GB, de Felix MRL, Simioni C, Ramlov F, Oliveira ER, Pereira DT, Maraschin M, Chow F, Horta PA, Lalau CM, da Costa CH, Matias WG, Bouzon ZL, Schmidt ÉC (2016) Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 253:111–125.  https://doi.org/10.1007/s00709-015-0795-4 CrossRefGoogle Scholar
  18. Crowder A (1991) Acidification, metals and macrophytes. Environ Pollut 71:171–203.  https://doi.org/10.1016/0269-7491(91)90032-R CrossRefGoogle Scholar
  19. Dalcorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6:1770–1788.  https://doi.org/10.1039/c4mt00173g CrossRefGoogle Scholar
  20. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–7278.  https://doi.org/10.1016/S0043-1354(00)00177-9 CrossRefGoogle Scholar
  21. Dias JA, Cearreta A, Isla FI, de Mahiques MM (2013) Anthropogenic impacts on Iberoamerican coastal areas: historical processes, present challenges, and consequences for coastal zone management. Ocean Coast Manag 77:80–88.  https://doi.org/10.1016/j.ocecoaman.2012.07.025 CrossRefGoogle Scholar
  22. Edwards P (1972) Cultured red alga to measure pollution. Mar Pollut Bull.  https://doi.org/10.1016/0025-326X(72)90266-4 CrossRefGoogle Scholar
  23. Faccini AL, Berchez F (2000) Management of natural beds and standing stock evaluation of Hypnea musciformis (Gigartinales, Rhodophyta) in south-eastern Brazil. J Appl Phycol 12:101–103.  https://doi.org/10.1023/A:1008120229562 CrossRefGoogle Scholar
  24. Figueiredo MAO, Horta PA, Pedrini ADG, Nunes JMDC (2008) Benthic marine algae of the coral reefs of Brazil: a literature review. Oecologia Bras 12:258–269.  https://doi.org/10.4257/oeco.2008.1202.07 CrossRefGoogle Scholar
  25. Furness RW, Rainbow PS (1987) Heavy metals in the marine environment, 1st edn. Taylor and FrancisGoogle Scholar
  26. Gomes LEO, Correa LB, Sá F et al (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar Pollut Bull 120:28–36.  https://doi.org/10.1016/j.marpolbul.2017.04.056 CrossRefGoogle Scholar
  27. Guevara YZC, de Souza JJLL, Veloso GV et al (2018) Reference values of soil quality for the Rio Doce basin. Rev Bras Ciência do Solo 42.  https://doi.org/10.1590/18069657rbcs20170231
  28. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11.  https://doi.org/10.1093/jxb/53.366.1 CrossRefGoogle Scholar
  29. Hatje V, Pedreira RMA, de Rezende CE, Schettini CAF, de Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:10706.  https://doi.org/10.1038/s41598-017-11143-x CrossRefGoogle Scholar
  30. Haugan JA, Liaaen-Jensen S (1994) Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 22:31–41.  https://doi.org/10.1016/0305-1978(94)90112-0 CrossRefGoogle Scholar
  31. Hem JD (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol Soc Am Bull 83:443–450.  https://doi.org/10.1130/0016-7606 CrossRefGoogle Scholar
  32. Hernández-Almaraz P, Méndez-Rodríguez L, Zenteno-Savín T et al (2014) Metal mobility and bioaccumulation differences at lower trophic levels in marine ecosystems dominated by Sargassum species. J Mar Biol Assoc United Kingdom 94:435–442.  https://doi.org/10.1017/S0025315413001653 CrossRefGoogle Scholar
  33. Howarth R, Chan F, Conley DJ et al (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26.  https://doi.org/10.1890/100008 CrossRefGoogle Scholar
  34. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194.  https://doi.org/10.1016/S0015-3796(17)30778-3 CrossRefGoogle Scholar
  35. Kuhnen S, Lemos PMM, Campestrini LH et al (2009) Antiangiogenic properties of carotenoids: a potential role of maize as functional food. J Funct Foods 1:284–290.  https://doi.org/10.1016/j.jff.2009.04.001 CrossRefGoogle Scholar
  36. Kursar TA, van der Meer J, Alberte RS (1983) Light-harvesting system of the red alga Gracilaria tikvahiae: II. Phycobilisome characteristics of pigment mutants. Plant Physiol 73:361–369.  https://doi.org/10.1104/pp.73.2.361 CrossRefGoogle Scholar
  37. Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer New York, New YorkCrossRefGoogle Scholar
  38. Lamouroux JVF (1813) Essai sur les genres de la famille des Thalassiophytes non articulées. Annales du Muséum d’Histoire Naturelle, ParisGoogle Scholar
  39. Lignell Å, Pedersén M (1989) Agar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar 32:219–227.  https://doi.org/10.1515/botm.1989.32.3.219 CrossRefGoogle Scholar
  40. Magris RA, Marta-Almeida M, Monteiro JAF, Ban NC (2019) A modelling approach to assess the impact of land mining on marine biodiversity: assessment in coastal catchments experiencing catastrophic events (SW Brazil). Sci Total Environ 659:828–840.  https://doi.org/10.1016/j.scitotenv.2018.12.238 CrossRefGoogle Scholar
  41. Marta-Almeida M, Mendes R, Amorim FN, Cirano M, Dias JM (2016) Fundão Dam collapse: oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Mar Pollut Bull 112:359–364.  https://doi.org/10.1016/j.marpolbul.2016.07.039 CrossRefGoogle Scholar
  42. Mattio L, Payri CE (2011) 190 years of sargassum taxonomy, facing the advent of DNA phylogenies. Bot Rev 77:31–70.  https://doi.org/10.1007/s12229-010-9060-x CrossRefGoogle Scholar
  43. Mendes LF, Zambotti-Villela L, Colepicolo P et al (2013) Metal cation toxicity in the alga Gracilaria domingensis as evaluated by the daily growth rates in synthetic seawater. J Appl Phycol 25:1939–1947.  https://doi.org/10.1007/s10811-013-0036-1 CrossRefGoogle Scholar
  44. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530.  https://doi.org/10.1016/j.fitote.2011.01.018 CrossRefGoogle Scholar
  45. Millaleo R, Reyes-Diaz M, Ivanov A et al (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481.  https://doi.org/10.4067/S0718-95162010000200008 CrossRefGoogle Scholar
  46. Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A, Retana MV, Díaz de Astarloa JM, Lewis M, Yorio P, Piriz ML, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS One 6:e14631.  https://doi.org/10.1371/journal.pone.0014631 CrossRefGoogle Scholar
  47. Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna - an example from the staurozoans (Cnidaria). Biota Neotrop 16.  https://doi.org/10.1590/1676-0611-BN-2016-0169
  48. Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46:27–46.  https://doi.org/10.1016/S0964-5691(02)00119-9 CrossRefGoogle Scholar
  49. Nadella SR, Fitzpatrick JL, Franklin N et al (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol - C Toxicol Pharmacol.  https://doi.org/10.1016/j.cbpc.2008.09.001 Google Scholar
  50. Nauer F, Cassano V, Oliveira MC (2015) Description of Hypnea pseudomusciformis sp. nov., a new species based on molecular and morphological analyses, in the context of the H. musciformis complex (Gigartinales, Rhodophyta). J Appl Phycol 27:2405–2417.  https://doi.org/10.1007/s10811-014-0488-y CrossRefGoogle Scholar
  51. Páez-Osuna F, Ochoa-Izaguirre MJ, Bojórquez-Leyva H, Michel-Reynoso IL (2000) Macroalgae as biomonitors of heavy metal availability in coastal lagoons from the subtropical Pacific of Mexico. Bull Environ Contam Toxicol 64:846–851.  https://doi.org/10.1007/s001280000080 CrossRefGoogle Scholar
  52. Pinnegar JK, Polunin NVC, Francour P et al (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:S0376892900000205.  https://doi.org/10.1017/S0376892900000205 CrossRefGoogle Scholar
  53. Pinto E, Carvalho AP, Morais KH, et al (2011) Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata ( var . 349–354. doi:  https://doi.org/10.1590/S0102-695X2011005000060 CrossRefGoogle Scholar
  54. Pires JMM, de Lena JC, Machado CC, Pereira RS (2003) Potencial poluidor de resíduo sólido da Samarco Mineração: estudo de caso da barragem de Germano. Rev Árvore 27:393–397.  https://doi.org/10.1590/S0100-67622003000300017 CrossRefGoogle Scholar
  55. Queiroz HM, Nóbrega GN, Ferreira TO et al (2018) The Samarco mine tailing disaster: a possible time-bomb for heavy metals contamination? Sci Total Environ 637–638:498–506.  https://doi.org/10.1016/j.scitotenv.2018.04.370 CrossRefGoogle Scholar
  56. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151.  https://doi.org/10.1111/j.1469-185X.1981.tb00345.x CrossRefGoogle Scholar
  57. Riba I, García-Luquea RE, Blasco J, DelValls TA (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem Speciat Bioavailab 15:101–114.  https://doi.org/10.3184/095422903782775163 CrossRefGoogle Scholar
  58. Rico M, Benito G, Salgueiro AR, Díez-Herrero A, Pereira HG (2008) Reported tailings dam failures. J Hazard Mater 152:846–852.  https://doi.org/10.1016/j.jhazmat.2007.07.050 CrossRefGoogle Scholar
  59. Rodríguez-Figueroa GM, Shumilin E, Sánchez-Rodríguez I (2009) Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. J Appl Phycol 21:19–26.  https://doi.org/10.1007/s10811-008-9346-0 CrossRefGoogle Scholar
  60. Santiago EC, Africa CR (2008) Trace metal concentrations in the aquatic environment of Albay Gulf in the Philippines after a reported mine tailings spill. Mar Pollut Bull 56:1657–1663.  https://doi.org/10.1016/j.marpolbul.2008.05.014 CrossRefGoogle Scholar
  61. Santos R, Martins A, Batista M, Horta P (2015a) Regional and local factors determining green turtle Chelonia mydas foraging relationships with the environment. Mar Ecol Prog Ser 529:265–277.  https://doi.org/10.3354/meps11276 CrossRefGoogle Scholar
  62. Santos RW, Schmidt ÉC, Vieira IC, Costa GB, Rover T, Simioni C, Barufi JB, Soares CH, Bouzon ZL (2015b) The effect of different concentrations of copper and lead on the morphology and physiology of Hypnea musciformis cultivated in vitro: a comparative analysis. Protoplasma 252:1203–1215.  https://doi.org/10.1007/s00709-014-0751-8 CrossRefGoogle Scholar
  63. Scherner F, Antunes P, Cabral E et al (2013) Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76:106–115.  https://doi.org/10.1016/j.marpolbul.2013.09.019 CrossRefGoogle Scholar
  64. Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, Dos Reis Pedreira Filho W, Barbosa F Jr, Cerchiaro G, Silva FF, Batista BL (2016) Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ Pollut 218:813–825.  https://doi.org/10.1016/j.envpol.2016.08.005 CrossRefGoogle Scholar
  65. Shams El-Din NG, Mohamedein LI, El-Moselhy KM (2014) Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008-2010. Environ Monit Assess 186:5865–5881.  https://doi.org/10.1007/s10661-014-3825-3 CrossRefGoogle Scholar
  66. Silberfeld T, Rousseau F, de Reviers B (2014) An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptogam Algol 35:117–156.  https://doi.org/10.7872/crya.v35.iss2.2014.117 CrossRefGoogle Scholar
  67. da Silva CR, Cunha FG, Viglio EP (2016) Rompimento da barragem de mineração de ferro em Mariana-Minas Gerais, Brasil: Impactos físico-químicos. In: III Congresso da Sociedade de Análise de Risco Latino Americana, São PauloGoogle Scholar
  68. Storelli MM, Storelli A, Marcotrigiano GO (2001) Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy. Environ Int 26:505–509.  https://doi.org/10.1016/S0160-4120(01)00034-4 CrossRefGoogle Scholar
  69. Sytar O, Kumar A, Latowski D et al (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999.  https://doi.org/10.1007/s11738-012-1169-6 CrossRefGoogle Scholar
  70. Széchy MTM, Paula ÉJ (2000) Padrões estruturais quantitativos de bancos de Sargassum (Phaeophyta, Fucales) do litoral dos estados do Rio de Janeiro e São Paulo, Brasil. Rev Bras Bot 23:121–132CrossRefGoogle Scholar
  71. Team, R Core (2016) R: A Language and Environment for Statistical Computing.Google Scholar
  72. Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55.  https://doi.org/10.1186/1999-3110-55-35
  73. Vinayak RC, Sabu AS, Chatterji A (2011) Bio-prospecting of a few brown seaweeds for their cytotoxic and antioxidant activities. Evidence-Based Complement Altern Med 2011:1–9.  https://doi.org/10.1093/ecam/neq024 CrossRefGoogle Scholar
  74. Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248.  https://doi.org/10.1016/j.foodchem.2009.02.041 CrossRefGoogle Scholar
  75. Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834.  https://doi.org/10.1007/s10811-013-0022-7 CrossRefGoogle Scholar
  76. Zou H-X, Pang Q-Y, Lin L-D, Zhang AQ, Li N, Lin YQ, Li LM, Wu QQ, Yan XF (2014) Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. PLoS One 9:e101960.  https://doi.org/10.1371/journal.pone.0101960 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giulia Burle Costa
    • 1
  • Fernanda Ramlov
    • 2
  • Bruna de Ramos
    • 1
  • Gabrielle Koerich
    • 1
  • Lidiane Gouvea
    • 1
  • Patrícia Gomes Costa
    • 3
  • Adalto Bianchini
    • 3
  • Marcelo Maraschin
    • 2
  • Paulo A. HortaJr
    • 1
    Email author
  1. 1.Phycology Laboratory, Botany DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Plant Morphogenesis and Biochemistry LaboratoryFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Biological Science InstituteFederal University of Rio Grande – FURGRio GrandeBrazil

Personalised recommendations