Advertisement

Antiproliferative and apoptosis-inducing effect of common Tunisian date seed (var. Korkobbi and Arechti) phytochemical-rich methanolic extract

  • Amira ThouriEmail author
  • Livia La Barbera
  • Lorena Canuti
  • Rolando Vegliante
  • Aicha Jelled
  • Guido Flamini
  • Maria Rosa Ciriolo
  • Lotfi Achour
Research Article
  • 17 Downloads

Abstract

In this study, the potential of date seed extracts to induce growth inhibition and apoptosis in HepG2 and HeLa cells was investigated. Analysis of the phytochemical compound content of the two Tunisian minor date seed extracts named Arechti and Korkobbi was determined. Moreover, their antioxidant properties are assessed through different assays including DPPH, ABTS, FRAP, TBARS, and phosphomolybdenum methods. Whereas, the cytotoxic effect was evaluated and apoptosis induction was confirmed by western blot technique (caspase-9, caspase-3, and PARP-1). The results proved the richness in phytochemical compounds of these by-products which explains the high in vitro antioxidant activity and the antiproliferative effects of both seed extracts. Additionally, the decrease in total PARP-1, procaspase-3 levels, and the increase of cleaved caspase-9 revealed the apoptotic effect of date seed extracts. These results collectively illustrate the potential of date seed extracts to induce growth inhibition and apoptosis in HepG2 and HeLa cells thanks to its phytochemical richness.

Keywords

Date seed Antiproliferative effect Antioxidant activities Phytochemical compounds Apoptosis 

Abbreviations

ABTS

2,2′-Azinobis-3-ethylbenzothiazoline-6-sulfonic acid

DPPH

1,1-Diphenyl-2-picrylhydrazyl

TBARS

Thiobarbituric acid-reactive substances

PARP-1

Poly [ADP-ribose] polymerase 1

Notes

Acknowledgments

The authors would like to thank all of the colleagues and students who contributed to this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Zubaidy NA, Al-Zubaidy AA, Sahib HB (2016) The anti-proliferative activity of Phoenix dactylifera seed extract on MCF-7 breast cancer cell line. Int J Pharm Sci Rev Res 41(2):358–362Google Scholar
  2. Aquilano K, Baldelli S, La Barbera L, Lettieri Barbato D, Tatulli G, Ciriolo MR (2016) Adipose triglyceride lipase decrement affects skeletal muscle homeostasis during aging through FAs-PPARα-PGC-1α antioxidant response. Oncotarget 7(17):23019–23032CrossRefGoogle Scholar
  3. Ateeq A, Sunil SD, Varun KS, Santosh KM (2013) Phoenix dactylifera linn. (Pind Kharjura): a review. Int J Res Ayurveda Pharm 4(3):447–451CrossRefGoogle Scholar
  4. Bode AM, Dong Z (2004) Targeting signal transduction pathways by chemopreventive agents. Mutat Res 555:33–51CrossRefGoogle Scholar
  5. Boudries H, Kefalas P, Hornero-Méndez D (2007) Carotenoid composition of Algerian date varieties (Phoenix dactylifera) at different edible maturation stages. Food Chem 101:1372–1377CrossRefGoogle Scholar
  6. Cainelli F, Vallone A (2009) Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi's sarcoma. Biologics 3:385–389Google Scholar
  7. Chahdoura H, Barreira JC, Barros LM, Santos-Buelga C, Ferreira ICFR, Achour L (2014) Phytochemical characterization and antioxidant activity of the cladodes of Opuntia macrorhiza (Engelm.) and Opuntia microdasys (Lehm.). Food Funct 5:2129–2136CrossRefGoogle Scholar
  8. Dixon SC, Soriano BJ, Lush RM, Borner MM, Figg WD (1997) Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. Ann Pharmacother 31:76–82CrossRefGoogle Scholar
  9. Dogra NK (2016) Phytochemical analysis and in vitro antioxidant studies of Plumeria obtusa L. Leaves. Indian J Pharm Sci 78(1):169–171CrossRefGoogle Scholar
  10. Dziedzic SZ, Hudson BJF (1983) Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem 12:205–212CrossRefGoogle Scholar
  11. El Arem A, Saafi EB, Mechri B, Lahouar L, Issaoui M, Hammami M, Achour L (2012) Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J Agric Food Chem 60:10896–10902CrossRefGoogle Scholar
  12. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50CrossRefGoogle Scholar
  13. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, pp 23–27Google Scholar
  14. Jemal A, Bray F, Center MM, Felay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefGoogle Scholar
  15. Kögel D, Fulda S, Mittelbronn M (2010) Therapeutic exploitation of apoptosis and autophagy for glioblastoma. Anti Cancer Agents Med Chem 10:438–449CrossRefGoogle Scholar
  16. Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32:121–124CrossRefGoogle Scholar
  17. Kumaran A, Karunakaran RJ (2006 ) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus, Food Chem 97:109-114.CrossRefGoogle Scholar
  18. Merkl R, Hrádková I, Filip V, Šmidrkal J (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl Esters. Czech J Food Sci 28(4):275–279CrossRefGoogle Scholar
  19. Michels G, Watjen W, Niering P, Steffan B, Thi QH, Chovolou Y, Kampkotter A, Bast A, Proksch P, Kahl R (2005) Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology 206(3):337–348CrossRefGoogle Scholar
  20. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751Google Scholar
  21. Murray JR, Hackett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix. J Plant Physiol 97:343–351CrossRefGoogle Scholar
  22. Nagaoka T, Banskota AH, Tezuka Y, Saiki I, Kadota S (2002) Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem 10(10):3351–3359CrossRefGoogle Scholar
  23. Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit: Nippon Shokuhin Kogyo Gakkaish. J JPN Soc Food Sci 39(10):925–928CrossRefGoogle Scholar
  24. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273:33533–33539CrossRefGoogle Scholar
  25. Oskoueian E, Abdullah N, Saad WZ, Omar AR, Kuan WB, Zolkifli NA, Hendra R, HoYW (2011) Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plant Res 5:49–57Google Scholar
  26. Park H, Han D, Park Y, Park J (2005) Differential biological responses of green tea polyphenol in normal cells vs. cancer cells. Curr Appl Phys 5:449–452CrossRefGoogle Scholar
  27. Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr 64:112–120CrossRefGoogle Scholar
  28. Pichichero E, Canuti L, Canini A (2009) Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J Sci Food Agric 89:609–616CrossRefGoogle Scholar
  29. Prasad R, Koch B (2014) Antitumor activity of ethanolic extract of dendrobium formosum in T-cell lymphoma: an in vitro and in vivo study. Biomed Res Int 2014 (6):753451Google Scholar
  30. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341CrossRefGoogle Scholar
  31. Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18:427–442CrossRefGoogle Scholar
  32. Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O (2013) Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. Curr Med Chem 20(36):4436–4450CrossRefGoogle Scholar
  33. Reis FS, Heleno SA, Barros L, Sousa MJ, Martins A, Santos-Buelga C, Ferreira ICFR (2011) Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. J Food Sci 76:824–830CrossRefGoogle Scholar
  34. Salvesen GS, Riedl SJ (2008) Caspase mechanisms. Adv Exp Med Biol 615:13–23CrossRefGoogle Scholar
  35. Sujak A, Gabrielska J, Grudziński W, Borc R, Mazurek P, Gruszecki WI (1999) Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys 371(2):301–307CrossRefGoogle Scholar
  36. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780CrossRefGoogle Scholar
  37. Taraphdar AK, Roy M, Bhattacharya RK (2001) Natural products as inducers of apoptosis: implication for cancer therapy and prevention. Curr Sci 80:1387–1396Google Scholar
  38. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316CrossRefGoogle Scholar
  39. Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI (2006) Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol 72:681–692Google Scholar
  40. Xu Y, Fan M, Ran J, Zhang T, Sun H, Dong M, Zhang Z, Zheng H (2016) Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J Biol Sci 23:379–388CrossRefGoogle Scholar
  41. Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24:131–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Laboratory, “Bioresources: Biology Integrative and Valorization”Higher Institute of Biotechnology of MonastirMonastirTunisia
  2. 2.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Laboratory of Histology and Cytogenetic and Childhood Disease UR12ES10, Faculty of MedicineUniversity of MonastirMonastirTunisia
  4. 4.Dipartimento di FarmaciaUniversity of PisaPisaItaly
  5. 5.Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute” NutrafoodUniversity of PisaPisaItaly

Personalised recommendations