Advertisement

Physiological responses of three mono-species phototrophic biofilms exposed to copper and zinc

  • Emilie Loustau
  • Jessica Ferriol
  • Shams Koteiche
  • Léo Gerlin
  • Joséphine Leflaive
  • Frédéric Moulin
  • Elisabeth Girbal-Neuhauser
  • Jean-Luc RolsEmail author
Research Article

Abstract

In freshwater ecosystem, phototrophic biofilms play a crucial role through adsorption and sequestration of organic and inorganic pollutants. However, extracellular polymeric substance (EPS) secretion by phototrophic biofilms exposed to metals is poorly documented. This work evaluated the physiological responses of phototrophic biofilms by exposing three microorganisms (cyanobacterium Phormidium autumnale, diatom Nitzschia palea and green alga Uronema confervicolum) to 20 and 200 μg L1 of Cu or 60 and 600 μg L−1 of Zn, both individually and in combination. Analysis of metal effects on algal biomass and photosynthetic efficiency showed that metals were toxic at higher concentrations for these two parameters together and that all the strains were more sensitive to Cu than to Zn. U. confervicolum was the most impacted in terms of growth, while P. autumnale was the most impacted in terms of photosynthetic efficiency. In consequence to metal exposure at higher concentrations (Cu200, Zn600 and Cu200Zn600), a higher EPS production was measured in diatom and cyanobacterium biofilms, essentially caused by an overproduction of protein-like polymers. On the other hand, the amount of secreted polysaccharides decreased during metal exposure of the diatom and green alga biofilms. Size exclusion chromatography revealed specific EPS molecular fingerprints in P. autumnale and N. palea biofilms that have secreted different protein-like polymers during their development in the presence of Zn600. These proteins were not detected in the presence of Cu200 despite an increase of proteins in the EPS extracts compared to the control. These results highlight interesting divergent responses between the three mono-species biofilms and suggest that increasing protein production in EPS biofilms may be a fingerprint of natural biofilm against metal pollutants in freshwater rivers.

Keywords

Metal toxicity Photosynthetic efficiency EPS production Protein stimulation 

Notes

Acknowledgements

EL was supported by a Ph. D. fellowship from the French « Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation ». This work was funded by the Idex UNITI grant of the Toulouse University, France (No. 2016 – 46 – CIF – D – DRDV). We are grateful to the ARIAS company (Toulouse), especially J.-J.Bertrand, for manufacturing the three mini-channels modules. We thank Vanina Agache for ARISA experiments. We thank Olga Oleinikova and Oleg S. Pokrovsky (from Geosciences Environment Toulouse laboratory) for Visual MINTEQ calculations. Finally, a warmly thanking to the reviewers of ESPR journal.

Supplementary material

11356_2019_6560_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1.80 mb)

References

  1. Angel BM, Simpson SL, Granger E, Goodwyn K, Jolley DF (2017) Time-averaged concentrations are effective for predicting chronic toxicity of varying copper pulse exposures for two freshwater green algae species. Environ Pollut 230:787–797CrossRefGoogle Scholar
  2. Anu PR, Nandan SB, Jayachandran PR, Xavier ND (2016) Toxicity effects of copper on the marine diatom, Chaetoceros calcitrans. Reg Stud Mar Sci 8:498–504CrossRefGoogle Scholar
  3. Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJ (2012) Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J Phycol 48:1494–1509CrossRefGoogle Scholar
  4. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113CrossRefGoogle Scholar
  5. Bellinger BJ, Gretz MR, Domozych DS, Kiemle SN, Hagerthey SE (2010) Composition of extracellular polymeric substances from periphyton assemblages in the Florida everglades. J Phycol 46:484–496CrossRefGoogle Scholar
  6. Benedetti MF, Milne C, Kinniburgh D, Van Riemsdijk WH, Koopal LK (1995) Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ Sci Technol 29:446–457CrossRefGoogle Scholar
  7. Bhatia D, Bourven I, Simon S, Bordas F, Van Hullebusch ED, Rossano S et al (2013) Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresour Technol 131:159–165CrossRefGoogle Scholar
  8. Blanck, H., Wängberg, SA and Molander, S. (1988) Pollution-induced community tolerance (PICT)—a new ecotoxicological tool. In: Cairns J Jr. & Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals, ASTM STP 988. Am. Soc. Test. Mater. Phila. pp 219-230.Google Scholar
  9. Cao D, Xie P, Deng J, Zhang H, Ma R, Liu C et al (2015) Effects of Cu2+ and Zn2+ on growth and physiological characteristics of green algae. Cladophora Environ Sci Pollut Res 22:16535–16541CrossRefGoogle Scholar
  10. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156CrossRefGoogle Scholar
  11. Cid A, Herrero C, Torres E, Abalde J (1995) Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol 31:165–174CrossRefGoogle Scholar
  12. Coutaud A, Meheut M, Viers J, Rols J-L, Pokrovsky OS (2014) Zn isotope fractionation during interaction with phototrophic biofilm. Chem Geol 390:46–60CrossRefGoogle Scholar
  13. Coutaud M, Méheut M, Glatzel P, Pokrovski GS, Viers J, Rols J-L, Pokrovsky OS (2018) Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochim Cosmochim Acta 220:1–18CrossRefGoogle Scholar
  14. Coutaud M, Meheut M, Viers J, Rols J-L, Pokrovsky OS (2019) Copper isotope fractionation during excretion from a phototrophic biofilm. Chem Geol 513:88–100CrossRefGoogle Scholar
  15. De Brouwer JFC, Ruddy GK, Jones TER, Stal LJ (2002) Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries. Biogeochemistry 61:57–71CrossRefGoogle Scholar
  16. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708CrossRefGoogle Scholar
  17. Dorigo U, Leboulanger C (2001) A pulse-amplitude modulated fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton. J Appl Phycol 13:509–515CrossRefGoogle Scholar
  18. Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18:499–499CrossRefGoogle Scholar
  19. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  20. Fischer H, Sachse A, Steinberg CE, Pusch M (2002) Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnol Oceanogr 47:1702–1711CrossRefGoogle Scholar
  21. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636Google Scholar
  22. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163CrossRefGoogle Scholar
  23. Gaillardet J, Viers J, Dupré B (2014) Trace elements in river waters. Treatise on Geochemistry (second edition) 7:195–235CrossRefGoogle Scholar
  24. García-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581CrossRefGoogle Scholar
  25. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101CrossRefGoogle Scholar
  26. González AG, Fernández-Rojo L, Leflaive J, Pokrovsky OS, Rols JL (2016) Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp. Environ Sci Pollut Res 23:22136–22150CrossRefGoogle Scholar
  27. Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams 1. J Phycol 38:241–248CrossRefGoogle Scholar
  28. Gustafsson, J. (2011) Visual MINTEQ ver. 3.0, http://www2.lwr.kth.se/English/OurSoftware/Vminteq/
  29. Haferburg, G. and Kothe, E. (2012) Biogeosciences in heavy metal-contaminated soils. In, Bio-Geo Interactions in Metal-Contaminated Soils. Springer, pp. 17–34.Google Scholar
  30. Hammer, Ø., Harper, D.A.T., and Ryan, P.D. (2001) PAST-Palaeontological statistics. Www Uv Es∼ Pardomvpe20011pastpastprogpast Pdf Acessado Em 25: 2009.Google Scholar
  31. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266CrossRefGoogle Scholar
  32. Hogsden KL, Harding JS (2012) Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environ Pollut 162:466–474CrossRefGoogle Scholar
  33. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14CrossRefGoogle Scholar
  34. Kaplan D, Christiaen D, Arad S (1988) Binding of heavy metals by algal polysaccharides. In: Stadler T et al (eds) Algal biotechnology. Elsevier, London, pp 122–136Google Scholar
  35. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159CrossRefGoogle Scholar
  36. Kroll A, Matzke M, Rybicki M, Obert-Rauser P, Burkart C, Jurkschat K et al (2016) Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions. Environ Sci Pollut Res 23:4218–4234CrossRefGoogle Scholar
  37. Lambert A-S, Morin S, Artigas J, Volat B, Coquery M, Neyra M, Pesce S (2012) Structural and functional recovery of microbial biofilms after a decrease in copper exposure: influence of the presence of pristine communities. Aquat Toxicol 109:118–126CrossRefGoogle Scholar
  38. Lambert AS, Dabrin A, Morin S, Gahou J, Foulquier A, Coquery M, Pesce S (2016) Temperature modulates phototrophic periphyton response to chronic copper exposure. Environ Pollut 208:821–829CrossRefGoogle Scholar
  39. Lamberti, G.A. (1996) The role of periphyton in benthic food webs. In: Algal ecology. Elsevier, pp. 533–572.Google Scholar
  40. Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154CrossRefGoogle Scholar
  41. Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89:82–93CrossRefGoogle Scholar
  42. Li Y, Zheng Y, Qian J, Chen X, Shen Z, Tao L et al (2012) Preventive effects of zinc against psychological stress-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats. Biol Trace Elem Res 147:285–291CrossRefGoogle Scholar
  43. Lone MI, He Z-L, Stoffella PJ, and Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220CrossRefGoogle Scholar
  44. Loustau E, Rols J-L, Leflaive J, Marcato-Romain C-E, Girbal-Neuhauser E (2018) Comparison of extraction methods for the characterization of extracellular polymeric substances from aggregates of three biofilm-forming phototrophic microorganisms. Can J Microbiol 64:887–899CrossRefGoogle Scholar
  45. Lyautey E, Jackson CR, Cayrou J, Rols J-L, Garabétian F (2005) Bacterial community succession in natural river biofilm assemblages. Microb Ecol 50:589–601CrossRefGoogle Scholar
  46. Manimaran K, Karthikeyan P, Ashokkumar S, Prabu VA, Sampathkumar P (2012) Effect of copper on growth and enzyme activities of marine diatom, Odontella mobiliensis. Bull Environ Contam Toxicol 88:30–37CrossRefGoogle Scholar
  47. Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, Schoefs B (2013) Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—a review. Cryptogam Algol 34:185–225CrossRefGoogle Scholar
  48. Miao A-J, Wang W-X, Juneau P (2009) Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environ Toxicol Chem 24:2603–2611CrossRefGoogle Scholar
  49. Milne CJ, Kinniburgh DG, van Riemsdijk WH, Tipping E (2003) Generic NICA-donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37(5):958–971CrossRefGoogle Scholar
  50. Montuelle B, Dorigo U, Bérard A, Volat B, Bouchez A, Tlili A et al (2010) The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 657:123–141CrossRefGoogle Scholar
  51. Morin S, Vivas-Nogues M, Duong TT, Boudou A, Coste M, Delmas F (2007) Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundam Appl Limnol Für Hydrobiol 168:179–187CrossRefGoogle Scholar
  52. Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA et al (2015) Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteome 120:75–94CrossRefGoogle Scholar
  53. Mu W, Jia K, Liu Y, Pan X, Fan Y (2017) Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats. Environ Sci Pollut Res 24:26375–26386CrossRefGoogle Scholar
  54. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  55. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D et al (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41:8557–8566CrossRefGoogle Scholar
  56. Perales-Vela HV, González-Moreno S, Montes-Horcasitas C, Cañizares-Villanueva RO (2007) Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281CrossRefGoogle Scholar
  57. Pistocchi R, Mormile MA, Guerrini F, Isani G, Boni L (2000) Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. J Appl Phycol 12:469–477CrossRefGoogle Scholar
  58. Rabiet, M., Coquery, M., Carluer, N., Gahou, J., and Gouy, V. (2015) Transfer of metal (loid)s in a small vineyard catchment: contribution of dissolved and particulate fractions in river for contrasted hydrological conditions. Environ Sci Pollut Res 22: 19224–19239.CrossRefGoogle Scholar
  59. Ras M, Girbal-Neuhauser E, Paul E, Spérandio M, Lefebvre D (2008) Protein extraction from activated sludge: an analytical approach. Water Res 42:1867–1878CrossRefGoogle Scholar
  60. Reese MJ (1937) The microflora of the non-calcareous streams Rheidol and Melindwr with special reference to water pollution from lead mines in Cardiganshire. J Ecol 25:385–407CrossRefGoogle Scholar
  61. Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339CrossRefGoogle Scholar
  62. Romaní AM, Giorgi A, Acuna V, Sabater S (2004) The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnol Oceanogr 49:1713–1721CrossRefGoogle Scholar
  63. Rossi F, Micheletti E, Bruno L, Adhikary SP, Albertano P, De Philippis R (2012) Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28:215–224CrossRefGoogle Scholar
  64. Sabatini, S.E., Juarez, A.B., Eppis, M.R., Bianchi, L., Luquet, C.M., and de Molina del MCR C.R. (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72: 1200–1206.Google Scholar
  65. Schmitt J, Nivens D, White DC, Flemming H-C (1995) Changes of biofilm properties in response to sorbed substances—an FTIR-ATR study. Water Sci Technol 32:149–155CrossRefGoogle Scholar
  66. Serra A, Guasch H (2009) Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Total Environ 407:5274–5282CrossRefGoogle Scholar
  67. Serra A, Corcoll N, Guasch H (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633–641CrossRefGoogle Scholar
  68. Sheldon F, and Walker KF (1997) Changes in biofilms induced by flow regulation could explain extinction of aquatic snails in the lower River Murray, Australia. Hydrobiologia 347:97–108CrossRefGoogle Scholar
  69. Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45:6039–6050CrossRefGoogle Scholar
  70. Sheng G-P, Yu H-Q, Li X-Y (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894CrossRefGoogle Scholar
  71. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  72. Staats N, Stal LJ, Mur LR (2000) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J Exp Mar Biol Ecol 249:13–27CrossRefGoogle Scholar
  73. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205Google Scholar
  74. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefGoogle Scholar
  75. Stewart TJ, Traber J, Kroll A, Behra R, Sigg L (2013) Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND). Environ Sci Pollut Res 20:3214–3223CrossRefGoogle Scholar
  76. Takamura N, Kasai F, Watanabe MM (1989) Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol 1:39–52CrossRefGoogle Scholar
  77. Takamura N, Kasai F, Watanabe MM (1990) Unique response of Cyanophyceae to copper. J Appl Phycol 2:293–296CrossRefGoogle Scholar
  78. Tottey S, Patterson CJ, Banci L, Bertini I, Felli IC, Pavelkova A et al (2012) Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proc Natl Acad Sci 109:95–100CrossRefGoogle Scholar
  79. Weingerl V, Kerin D (2000) Distribution of zinc in vineyard areas treated with zinc containing phytopharmaceuticals. Acta Chim Slov 47:453–468Google Scholar
  80. Williams LG, Mount DI (1965) Influence of zinc on periphytic communities. Am J Bot 52:26–34CrossRefGoogle Scholar
  81. Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L et al (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237CrossRefGoogle Scholar
  82. Zvezdanović J, Marković D (2009) Copper, iron, and zinc interactions with chlorophyll in extracts of photosynthetic pigments studied by VIS spectroscopy. Russ J Phys Chem A 83:1542–1546CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.EcoLabUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance
  2. 2.LBAEUniversité de Toulouse, UPSAuchFrance
  3. 3.IMFTUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance

Personalised recommendations