Advertisement

“Modern agriculture” transfers many pesticides to watercourses: a case study of a representative rural catchment of southern Brazil

  • José Augusto Monteiro de Castro Lima
  • Jérôme Labanowski
  • Marília Camotti Bastos
  • Renato Zanella
  • Osmar Damian Prestes
  • Jocelina Paranhos Rosa de Vargas
  • Leslie Mondamert
  • Eugenie Granado
  • Tales TiecherEmail author
  • Mohsin Zafar
  • Alexandre Troian
  • Thibaut Le Guet
  • Danilo Rheinheimer dos Santos
Research Article
  • 35 Downloads

Abstract

The total cultivated area in Brazil reached to 62 million ha in 2018, with the predominance of genetically modified soybean and corn (36 and 17 million ha, respectively) in no-tillage systems. In 2018, 5.3 × 105 Mg of active ingredient of pesticides was applied in cropfields, representing about 7.3 L of commercial product by habitant. However, the monitoring of water courses contamination by pesticides remains scarce and is based on traditional grab sampling systems. In this study, we used the grab (water) and passive sampling (Polar Organic Chemical Integrative Sampler—POCIS) to monitor pesticide contamination in the river network of a representative agricultural catchment of southern Brazil. We selected 18 sampling sites located in tributaries and in the main course of the Guaporé River, in Rio Grande do Sul State, with different land use predominance including forest, urban, and agricultural areas. Altogether, 79 and 23 pesticides were, respectively, analyzed in water and POCIS samples. The water of Guaporé River and its tributaries were highly contaminated by many pesticides, especially by four herbicides (2,4-D, atrazine, deethyl-atrazine, and simazine), three fungicides (carbendazim, tebuconazole, and epoxiconazole), and one insecticide (imidacloprid). The amount, type, and concentration of pesticides detected were completely different depending on the sampling technic used. POCIS was effective to discriminate the contamination according to the main land use of each sampling site. The monitored areas with the predominance of soybean cultivation under no-tillage tended to have higher concentrations of fungicide, while in the more diversified region, the herbicides showed higher values. The presence of five herbicides used in corn and grassland forage production was correlated with areas of integrated crop-livestock systems, in contrast to higher contamination by 2,4-D in areas of intensive production of soybean and winter cereals.

Keywords

Environmental monitoring Polar Organic Chemical Integrative Sampler Water contamination 

Notes

Acknowledgements

The authors acknowledge the following: Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian National Council for Scientific and Technological Development (CNPq), and Project “Mais Água” of FINEP/FEPAGRO/SEAPA-RS.

Supplementary material

11356_2019_6550_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)

References

  1. Ahrens L, Daneshvar A, Lau AE, Kreuger J (2015) Characterization of five passive sampling devices for monitoring of pesticides in water. J Chromatogr A 1405:1–11CrossRefGoogle Scholar
  2. Alvarez DA, Stackelberg PE, Petty JD, Huckins JN, Furlong ET, Zaugg SD, Meyer MT (2005) Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere 61:610–622CrossRefGoogle Scholar
  3. Armas ED, Monteiro RTR, Antunes PM, Santos MAPF, Abakerli RB (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do rio Corumbataí e principais afluentes. Química Nova 30(5):1119–1127CrossRefGoogle Scholar
  4. Arufe MI, Arellano J, Moreno MJ, Sarasquete C (2004) Comparative toxic effects of formulated simazine on Vibrio fischeri and gilthead seabream (Sparus aurata L.) larvae. Chemosphere 57(11):1725–1732CrossRefGoogle Scholar
  5. Azevedo DA, Silva TR, Knoppersb BA, Schulz-Bullc D (2010) Triazines in the Tropical Lagoon System of Mundaú-Manguaba, NE-Brazil. J Braz Chem Soc 21(6):1096–1105CrossRefGoogle Scholar
  6. Bayen S, Segovia E, Loh LLLL, Burger DFDF, Eikaas HSHS, Kelly BCBC (2014) Application of Polar Organic Chemical Integrative Sampler (POCIS) to monitor emerging contaminants in tropical waters. Sci Total Environ 482:15–22CrossRefGoogle Scholar
  7. Becker AG, Moraes BS, Menezes CC, Loro VL, Rheinheimer DS, Reichert JM, Baldisserotto B (2009) Pesticide contamination of water alters the metabolism of juvenile silver catfish, Rhamdia quelen. Ecotoxicol Environ Saf 72:1734–1739CrossRefGoogle Scholar
  8. Belles A, Pardon P, Budzinski H (2013) Development of an adapted version of polar organic chemical integrative samplers (POCIS-Nylon). Anal Bioanal Chem 406(4):1099–1110CrossRefGoogle Scholar
  9. Bohn T, Cocco E, Gourdol L, Guignard C, Hoffmann L (2011) Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides. Food Addit Contam 28(8):1041–1054CrossRefGoogle Scholar
  10. Booij K, Sleiderink HM, Smedes F (1998) Calibrating the uptake kinetics of semipermeable membrane devices using exosure standars. Environ Toxicol Chem 17:1236–1245CrossRefGoogle Scholar
  11. Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schutt B, Ferro V, Bagarello V, Van Oost K, Montanarella L, Panagos P (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):1–13CrossRefGoogle Scholar
  12. Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Zanella R, Copetti ACC (2006) Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev Bra Engenharia Agríc Ambiental 10(4):881–887CrossRefGoogle Scholar
  13. Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R (2007) Investigation of the occurrence of pesticide residues in rural wells and surface. Química Nova 30:1872–1876CrossRefGoogle Scholar
  14. BRASIL (1986) Projeto RADAMBRASIL, Folha SH. 22 Porto Alegre e parte das folhas SH. 21 Uruguaiana e SI. 22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra/ Fundação Instituto Brasileiro de Geografia e Estatística. IBGE, Rio de Janeiro, 796pGoogle Scholar
  15. BRASIL (2005) Resolução do CONAMA nº 357, de 18 de março de 2005. Congresso Nacional, Brasília, DFGoogle Scholar
  16. Challis JK, Cuscito LD, Joudan S, Luong KH, Knapp CW, Hanson ML, Wong CS (2018) Inputs, source apportionment, and transboundary transport of pesticides and other polar organic contaminants along the lower Red River, Manitoba, Canada. Sci Total Environ 635:803–816CrossRefGoogle Scholar
  17. Clasen BE, Loro VL, Cattaneo R, Moraes B, Lópes T, Avila AA, Zanella R, Reimche GB, Baldissertotto B (2012) Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: implications for rice-fish cultivation. Ecotoxicol Environ Saf 77:45–51CrossRefGoogle Scholar
  18. Clasen BE, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743CrossRefGoogle Scholar
  19. Cogo NP, Levien R, Schwarz RA (2003) Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo. Rev Bra Ciência Solo 27:743–753CrossRefGoogle Scholar
  20. Dalton RL, Pick FR, Boutin C, Saleem A (2014) Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS). Environ Pollut 189:134–142CrossRefGoogle Scholar
  21. Di Lorenzo T, Cifoni M, Fiasca B, Di Cioccio A, Galassi DMP (2018) Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: toward more realistic scenarios for risk mitigation. Sci Total Environ 644:161–172CrossRefGoogle Scholar
  22. Didoné EJ, Minella JPG, Reichert JM, Merten GH, Dalbianco L, Barrros CAP, Ramon R (2014) Impact of no-tillage agricultural systems on sediment yield in two large catchments in Southern Brazil. J Soils Sediments 14:1287–1297Google Scholar
  23. Didoné EJ, Minella JPG, Evrard O (2017) Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil. Soil Tillage Res 174:24–33CrossRefGoogle Scholar
  24. EMEA (2006) Guideline on the environmental risk assessment of medicinal products for human use CHMP/SWP/4447/00. The European Agency for theEvaluation of Medicinal Products, LondonGoogle Scholar
  25. Fauvelle, V., Mazzella, N., 2014. Application du POCIS pour l’echantillonnage des pesticides acides dans les eaux de surface: proposition d'une resine echangeuse d'anions comme phase receptrice. Rapport Aquaref - ME-12-Echantillonnage passif des herbicides anioniques. 7p.Google Scholar
  26. FEE. FUNDAÇÃO DE ECONOMIA E ESTATÍSTICA. 2019. Indicadores econômicos do agronegócio do Rio Grande do Sul. Disponível em: https://dados.fee.tche.br. Acesso em: 09 de abril de 2019.
  27. Fernandes G, Aparicio VC, Bastos MC, Gerónimo E, Labanowski J, Prestes OD, Zanella R, Rheinheimer DS (2018) Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Sci Total Environ 651:1377–1387CrossRefGoogle Scholar
  28. Fryirs K (2013) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surf Process Landf 38:30–46CrossRefGoogle Scholar
  29. Glusczak L, Miron DS, Moraes BS, Simões RR, Schetinger MRC, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol Part C: Toxicol Pharmacol 146(4):519–524Google Scholar
  30. Gonzalez-Rey M, Tapie N, Menach KLE, Dévier MH, Budzinski H, Bebianno MJ (2015) Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Mar Pollut Bull 96:384–400CrossRefGoogle Scholar
  31. Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard JP, Brizard Y, Guibaud G (2017) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut Res 25:14280–14293CrossRefGoogle Scholar
  32. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2009) Análise multivariada dos dados, 6rd. edn. Porto Alegre, Brasil, Bookman, 688pGoogle Scholar
  33. Harman C, Brooks S, Sundt RC, Meier S, Grung M (2011) Field comparison of passive sampling and biological approaches for measuring exposure to PAH and alkylphenols from offshore produced water discharges. Mar Pollut Bull 63:141–148CrossRefGoogle Scholar
  34. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler-a critical review. Environ Toxicol Chem 31:2724–2738CrossRefGoogle Scholar
  35. Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342CrossRefGoogle Scholar
  36. Huckins JN, Manuweera GK, Petty JD, Mackay D, Lebo JA (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ Sci Technol 27:2489–2496CrossRefGoogle Scholar
  37. IBAMA – INSTITUTO BRASILEIRO DO MEIO AMBIENTE E RECURSOS NATURAIS RENOVÁVEIS. 2019. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil. Brasília, 2019. Disponível em: http://www.ibama.gov.br/phocadownload/qualidade_ambiental/relatorios/2014/os_dez_ias_vendidos_2014.xls. Acesso em: 25 março 2019.
  38. IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2019. Censo Agropecuário 2017. Brasil. Brasília, 2019. Disponível em: https://censos.ibge.gov.br/agro/2017/templates/censo_agro/resultadosagro/agricultura.html. Acesso em: 25 março 2019.
  39. Ibrahim I, Togola A, Gonzalez C (2013) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res 20:3679–3687CrossRefGoogle Scholar
  40. INMET – INSTITUTO NACIONAL DE METEOROLOGIA. 2019 Estações Automáticas. Disponível: http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_auto_graf. Acesso em: 08 de abril 2019.
  41. Jablonowski ND, Köppchen S, Hofmann D, Schäffer A, Burauel P (2009) Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years. Environ Pollut 157(7):2126–2131CrossRefGoogle Scholar
  42. Jeschke P, Nauen R, Schindler M, Elbert A (2010) Overview of the status and global strategy for neonicotinoids (dagger). J Agric Food Chem 59(7):2897–2908CrossRefGoogle Scholar
  43. Kienzler A, Bopp S, Halder M, Embry M, Worth A (2019) Application of new statistical distribution approaches for environmental mixture risk assessment: a case study. Sci Total Environ 693:133510CrossRefGoogle Scholar
  44. Koiter AJ, Lobb DA, Owens PN, Petticrew EL, Tiessen KHD, Li S (2013) Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J Soils Sediments 13:1676–1691CrossRefGoogle Scholar
  45. Kreutz LC, Barcellos LJG, Silva TO, Anziliero D, Martins D, Lorenson M, Marteninghe A, Silva LB (2008) Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciência Rural 38:1050–1055CrossRefGoogle Scholar
  46. Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess: Int J 22:1050–1064CrossRefGoogle Scholar
  47. Liess M, Schulz R, Liess MHD, Rother B, Kreuzig R (1999) Determination of insecticide contamination in agricultural headwater streams. Water Res 33:239–247CrossRefGoogle Scholar
  48. Lissalde S, Mazzella N, Mazellier P (2014) Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions. Sci Total Environ 488–489:188–196CrossRefGoogle Scholar
  49. Londero AL, Minella JPG, Deuschle D, Schneider FJA, Boeni M, Merten GH (2018) Impact of broad-based terraces on water and sediment losses in no-till (paired zero-order) catchments in southern Brazil. J Soils Sediments 18(3):1159–1176CrossRefGoogle Scholar
  50. Loureiro S, Svendsen C, Ferreira ALG, Pinheiro C, Ribeiro F, Soares AMVM (2010) Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Environ Toxicol Chem 29(8):1716–1726CrossRefGoogle Scholar
  51. Martínez Bueno MJ, Herrera S, Munaron D, Boillot C, Fenet H, Chiron S, Gomez E (2016) POCIS passive samplers as a monitoring tool for pharmaceutical residues and their transformation products in marine environment. Environ Sci Pollut Res 23(6):5019–5029CrossRefGoogle Scholar
  52. Masiá A, Campo J, Vázquez-Roig P, Blasco C, Picó Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Watershed (Spain). J Hazard Mater 263:95–104CrossRefGoogle Scholar
  53. Mazzella N, Dubernet JF, Delmas F (2007) Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. J Chromatogr A 1154(1-2):42–51CrossRefGoogle Scholar
  54. Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44(5):1713–1719CrossRefGoogle Scholar
  55. Merten GH, Araújo AG, Biscaia RCM, Barbosa GMC, Conte O (2015) No-till surface runoff and soil losses in southern Brazil. Soil Tillage Res 152:85–93CrossRefGoogle Scholar
  56. Metcalfe C, Hoque ME, Sultana T, Murray C, Helm P, Kleywegt S (2014) Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environmental Science. Processes & Impacts 16(3):473–481CrossRefGoogle Scholar
  57. Metcalfe CD, Helm P, Paterson G, Kaltenecker G, Murray C, Nowierski M, Sultana T (2019) Pesticides related to land use in catchments of the Great Lakes basin. Sci Total Environ 648:681–692CrossRefGoogle Scholar
  58. Metre PC, Alvarez DA, Mahler BJ, Nowell L, Sandstrom M, Moran P (2016) Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers. Environ Pollut 220:431–440CrossRefGoogle Scholar
  59. Michaelides K, Chappell A (2009) Connectivity as a concept for characterising hydrological behaviour definitions of connectivity. Hydrol Process 522:517–522CrossRefGoogle Scholar
  60. Michel N, Freese M, Brinkmann M, Pohlmann JD, Hollert H, Kammann U, Haarich M, Theobald N, Gerwinski W, Rotard W, Hanel R (2016) Fipronil and two of its transformation products in water and European eel from the river Elbe. Sci Total Environ 568:171–179CrossRefGoogle Scholar
  61. Minella JPG, Walling DE, Merten GH (2014) Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies. J Hydrol 519:2189–2201CrossRefGoogle Scholar
  62. Moreira JC, Peres F, Simões AC, Pignati WA, Dores EC, Vieira SN, Strüssmann C, Mott T (2012) Contaminação de águas superficiais e de chuva por agrotóxicos em uma região do estado do Mato Grosso. Ciência & Saúde Coletiva 17(6):1557–1568CrossRefGoogle Scholar
  63. Moreira RA, Mansano AS, Silva LC, Rocha O (2014) A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnologica Brasiliensia 26(1):1–8CrossRefGoogle Scholar
  64. Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. Trends Anal Chem 36:144–175CrossRefGoogle Scholar
  65. Petty, J., Huckins, J., Alvarez, D., 2002. Device for sequestration and concentration of polar organic chemicals from water. U.S. Patent 6,478,961. U.S. Patent and Trademark Office, Washington, DC.Google Scholar
  66. Petty JD, Huckins JN, Alvarez DA, Brumbaugh WG, Cranor WL, Gale RW, Rastall AC, Jones-Lepp TL, Leiker TJ, Rostad CE, Furlong ET (2004) A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants. Chemosphere 54(6):695–705CrossRefGoogle Scholar
  67. Poulier G, Lissalde S, Charriau A, Buzier R, Delmas F, Gery K, Moreira A, Guibaud G, Mazzella N (2014) Can POCIS be used in Water Framework Directive (2000/60/EC) monitoring networks? A study focusing on pesticides in a French agricultural watershed. Sci Total Environ 497–498:282–292CrossRefGoogle Scholar
  68. Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment--effect of sampling frequency. Environ Pollut 158(3):737–748CrossRefGoogle Scholar
  69. REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), 2006. Regulation (EC) Nº 1907/2006. European Parliament and of the Council. Official Journal of the European Union. L 396/1 to 849.Google Scholar
  70. Rheinheimer DS, Pellegrini A, Alvarez JW, Krolow IRC, Capoane V, Krolow DRV (2017) Flow Regularization and power dissipation in watershed in the center west region of Rio Grande do Sul state, Brazil. Geociências 36(3):521–530Google Scholar
  71. Robinet J, Minella JPG, Barros CAP, Schlesner A, Lücke A, Ameijeiras-Mariño Y, Opfergelte S, Vanderborghta J, Govers G (2018) Impacts of forest conversion and agriculture practices on water pathways in Southern Brazil. Hydrol Process 32(15):2304–2317CrossRefGoogle Scholar
  72. Sancho E, Villarroel MJ, Andreu E, Ferrando MD (2009) Disturbances in energy metabolism of Daphnia magna after exposure to tebuconazole. Chemosphere 74(9):1171–1178CrossRefGoogle Scholar
  73. Schopfer A, Estoppey N, Omlin J, Udrisard R, Esseiva P, Alencastro LF (2014) The Use of Passive Samplers to Reveal Industrial and Agricultural Pollution Trends in Swiss Rivers. CHIMIA Int J Chem 68(11):778–782CrossRefGoogle Scholar
  74. Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689CrossRefGoogle Scholar
  75. Scotto MAL (2014) Fluxos de fósforo em uma bacia hidrográfica sob cultivo intensivo no sul do Brasil. Dissertação (Mestrado em Ciência do Solo) - Universidade Federal de Santa Maria, Santa MariaGoogle Scholar
  76. Sequinatto L, Reichert JM, Rheinheimer DS, Reinert DJ, Copetti ACC (2013) Occurrence of agrochemicals in surface waters of shallow soils and steep slopes cropped to tobacco. Química Nova 36(6):768–772CrossRefGoogle Scholar
  77. Silva, V.S., Poulsen, A., Tjeerdema, R., 2014. The Potential of POCIS and SPMD Passive Samplers to Measure Pesticides in California Surface Waters. Final Report Agreement No. 11-C0115. Department of Environmental Toxicology University of California, 47p.Google Scholar
  78. Silva ARR, Cardoso DN, Cruz A, Lourenço J, Mendo S, Soares AMVM, Loureiro S (2015) Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicol Environ Saf 115:279–290CrossRefGoogle Scholar
  79. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14(3):317–329.  https://doi.org/10.1007/s10311-016-0566-2 CrossRefGoogle Scholar
  80. Sridhar K, Joice PE (2012) Carbendazim induced histopathological and histochemical changes in liver tissues of common carp Cyprinus carpio. Int J Adv Life Sci 5(1):65–70Google Scholar
  81. Stehle S, Schulz R (2015) Pesticide authorization in the EU—environment unprotected? Environ Sci Pollut Res 22:19632–19647CrossRefGoogle Scholar
  82. Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136(3):503–524CrossRefGoogle Scholar
  83. Terzopoulou E, Voutsa D (2016) Active and passive sampling for the assessment of hydrophilic organic contaminants in a river watershed-ecotoxicological risk assessment. Environ Sci Pollut Res 23(6):5577–5591CrossRefGoogle Scholar
  84. Tiecher, T., Minella, J.P.G., Caner, L., Evrard, O., Zafar, M., Capoane, V., Gall, M.L, Rheinheimer, D.S., 2017. Quantifying land use contributions to suspended sediment in a large cultivated catchment of Southern Brazil (Guaporé River, Rio Grande do Sul). Agric Ecosyst Environ 237, 95–108.CrossRefGoogle Scholar
  85. Toussaint MW, Shedd TR, van der Schalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ Toxicol Chem 14(5):907–915CrossRefGoogle Scholar
  86. Tyor AK, Harkrishan (2016) Effects of imidacloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.). Int J Fish Aquat Stud 4(4):385–389Google Scholar
  87. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, Knutsson J, Morrison G (2005) Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem 24(10):845–868CrossRefGoogle Scholar
  88. Zeng H, Xin F, Liang Y, Qin L, Mobc L (2018) Risk assessment of an organochlorine pesticide mixture in the surface waters of Qingshitan Reservoir in Southwest China. RSC Adv 8(8):17797–17805CrossRefGoogle Scholar
  89. Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • José Augusto Monteiro de Castro Lima
    • 1
  • Jérôme Labanowski
    • 2
  • Marília Camotti Bastos
    • 3
  • Renato Zanella
    • 3
  • Osmar Damian Prestes
    • 3
  • Jocelina Paranhos Rosa de Vargas
    • 3
  • Leslie Mondamert
    • 2
  • Eugenie Granado
    • 2
  • Tales Tiecher
    • 4
    Email author
  • Mohsin Zafar
    • 5
  • Alexandre Troian
    • 3
  • Thibaut Le Guet
    • 2
  • Danilo Rheinheimer dos Santos
    • 3
  1. 1.Instituto Federal de AlagoasMaceióBrazil
  2. 2.Université de Poitiers, IC2MP, UMR CNRS 7285Poitiers Cedex 9France
  3. 3.Universidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.University of Poonch RawalakotAzad Jammu and KashmirPakistan

Personalised recommendations