Advertisement

Genotoxic endpoints in a Pb-accumulating pea cultivar: insights into Pb2+ contamination limits

  • Eleazar Rodriguez
  • Márcia Sousa
  • Anicia Gomes
  • Raquel Azevedo
  • Nuno Mariz-Ponte
  • Sara Sario
  • Rafael José MendesEmail author
  • Conceição Santos
Research Article

Abstract

Lead (Pb) persists among the most hazardous contaminant metals. Pb-induced genotoxic effects remain a matter of debate as they are a major cause of plant growth impairment, but assessing Pb genotoxicity requires the selection of Pb-sensitive genotoxic biomarkers. Seedlings of the ecotoxicological model species Pisum sativum L. were exposed to Pb2+ (≤ 2000 mg L−1). Flow cytometry (FCM) revealed that 28 days after, Pb2+ arrested root cell cycle at G2 but no eu/aneuploidies were found. Comet assay and FCM-clastogenicity assays showed that Pb2+ increased DNA breaks in roots at concentrations as low as 20 mg L−1. Leaves showed no variation in DNA-ploidy or cell cycle progression but had increased DNA breaks at the highest Pb2+ dose. We conclude that both Comet assay and the full-peak coefficient of variation (FPCV) were the most relevant endpoints of Pb-phytogenotoxicity. Also, the Pb-induced DNA breaks may be related with the arrest at the G2-checkpoint. Data will be relevant to better define Pb2+ ecogenotoxicological effects and their measuring tools and may contribute to a regulatory debate of this pollutant limits.

Keywords

Cytostaticity Comet assay DNA breaks Lead Phytogenotoxicity Pisum sativum 

Notes

Funding information

This work was funded by FEDER/COMPETE [POCI/01/0145/FEDER/007265; FCT/MEC PT2020 UID/QUI/5006/2019]; Fundação para a Ciência e Tecnologia funded Nuno Mariz-Ponte, SFRH/BD/138187/2018; Sara Sario, SFRH/BD/138186/2018; and Rafael J. Mendes, SFRH/BD/133519/2017.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Azevedo H, Gomes C, Pinto G, Santos C (2005) Cadmium effects in sunflower: nutrient imbalances in leaves and calluses. J Pant Nutr 28(12):2233–2241.  https://doi.org/10.1080/01904160500324808 CrossRefGoogle Scholar
  2. Azevedo R, Rodriguez E, Mendes RJ, Mariz-Ponte N, Sario S, Lopes JC, Ferreira de Oliveira JMP, Santos C (2018) Inorganic Hg toxicity in plants: a comparison of different genotoxic parameters. Plant Physiol Biochem 125:247–254.  https://doi.org/10.1016/j.plaphy.2018.02.015 CrossRefGoogle Scholar
  3. Cao X, Wang H, Zhuang D, Zhu H, Du Y, Cheng Z, Cui W, Rogers HJ, Zhang Q, Jia C, Yang Y, Tai P, Xie F, Liu W (2018) Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots. Chemosphere 201:586–594.  https://doi.org/10.1016/j.chemosphere.2018.03.017 CrossRefGoogle Scholar
  4. Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473.  https://doi.org/10.1016/j.envexpbot.2009.10.001 CrossRefGoogle Scholar
  5. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151.  https://doi.org/10.1093/mutage/gem051 CrossRefGoogle Scholar
  6. Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 37:121–129.  https://doi.org/10.1016/j.plaphy.2019.02.005 CrossRefGoogle Scholar
  7. Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234:431–444.  https://doi.org/10.1016/j.scienta.2017.12.039 CrossRefGoogle Scholar
  8. Ghani A, Khan I, Ahmed I, Mustafa I, Abd-Ur-Rehman MN (2015) Amelioration of lead toxicity in Pisum sativum (L.) by foliar application of salicylic acid. J\ Environ Anal Toxicol 5(292):2161–0525.  https://doi.org/10.4172/2161-0525.1000292 CrossRefGoogle Scholar
  9. Gichner T, Patkova Z, Szakova J, Znidar I, Mukherjee A (2008a) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and gamma-rays. Environ Exp Bot 62:113–119.  https://doi.org/10.1016/j.envexpbot.2007.07.013 CrossRefGoogle Scholar
  10. Gichner T, Znidar I, Szakova J (2008b) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res Genet Toxicol Environ 652:186–190.  https://doi.org/10.1016/j.mrgentox.2008.02.009 CrossRefGoogle Scholar
  11. Hardison D Jr, Ma LQ, Luongo T, Harris WG (2004) Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Sci Total Environ 328:175–183.  https://doi.org/10.1016/j.scitotenv.2003.12.013 CrossRefGoogle Scholar
  12. Hattab S, Chouba L, Kheder M, Mahouachi T, Boussetta H (2009) Cadmium- and copper-induced DNA damage in Pisum sativum roots and leaves as determined by the Comet assay. Plant Biosyst 143:S6–S11.  https://doi.org/10.1080/11263500903187035 CrossRefGoogle Scholar
  13. Jeong H, Kim H, Jang T (2016) Irrigation water quality standards for indirect wastewater reuse in agriculture: a contribution toward sustainable wastewater reuse in South Korea. Water 8(4):169.  https://doi.org/10.3390/w8040169 CrossRefGoogle Scholar
  14. Kumar A, Prasad M, Achary M, Panda B (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res 20:4551–4561.  https://doi.org/10.1007/s11356-012-1354-6 CrossRefGoogle Scholar
  15. Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140.  https://doi.org/10.1111/j.1744-7909.2007.00608.x CrossRefGoogle Scholar
  16. López-Orenes A, Dias MC, Ferrer MÁ, Calderón A, Moutinho-Pereira J, Correia C, Santos C (2018) Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environ Sci Pollut Res 25(2):1319–1330.  https://doi.org/10.1007/s11356-017-0505-1 CrossRefGoogle Scholar
  17. Loureiro J, Capelo A, Brito G, Rodriguez E, Silva S, Santos C (2007) Micropropagation of Juniperus phoenicea L adult plants and analyses of ploidy stability and DNA content in micropragation plants. Biol Plant 51:7–14.  https://doi.org/10.1007/s10535-007-0003-2 CrossRefGoogle Scholar
  18. Malar S, Manikandan R, Favas P, Vikram Sahi S, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257.  https://doi.org/10.1016/j.ecoenv.2014.05.018 CrossRefGoogle Scholar
  19. MAOTDR, Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional (2009) DL 277/2009, 192-2-10-2009, 7154-7165Google Scholar
  20. Monteiro MS, Rodriguez E, Loureiro J, Mann R, Soares A, Santos C (2010) Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotoxicol Environ Saf 73:1231–1237.  https://doi.org/10.1016/j.ecoenv.2010.06.020 CrossRefGoogle Scholar
  21. Piechalak A, Tomaszewska B, Baralkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239–1251.  https://doi.org/10.1016/S0031-9422(03)00515-6 CrossRefGoogle Scholar
  22. Rodriguez E, Azevedo R, Moreira H, Souto L, Santos C (2013) Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism. Plant Physiol Biochem 62:19–22.  https://doi.org/10.1016/j.plaphy.2012.10.006 CrossRefGoogle Scholar
  23. Santos C, Pourrut B, Oliveira J (2015) The use of comet assay in plant toxicology: recent advances. Front Genet 30(6):216.  https://doi.org/10.3389/fgene.2015.00216 CrossRefGoogle Scholar
  24. Seth C, Misra V, Chauhan L (2012) Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica Juncea L). Int J Phytoremed 14:1):1–1)13.  https://doi.org/10.1080/15226514.2011.555799 CrossRefGoogle Scholar
  25. Shahid M, Dumat C, Pourrut B, Pinelli E (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297.  https://doi.org/10.1016/j.gexplo.2014.01.003 CrossRefGoogle Scholar
  26. Silva S, Santos C, Matos M, Pinto-Carnide O (2012) Al toxicity mechanism in tolerant and sensitive rye genotypes. Environ Exp Bot 75:89–97.  https://doi.org/10.1016/j.envexpbot.2011.08.017 CrossRefGoogle Scholar
  27. Silva S, Pinto G, Santos C (2017) Low doses of Pb affected Lactuca sativa photosynthetic performance. Photosynthetica 55(1):50–57.  https://doi.org/10.1007/s11099-016-0220-z CrossRefGoogle Scholar
  28. Tariq SR, Ashraf A (2016) Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab J Chem 9(6):806–814.  https://doi.org/10.1016/j.arabjc.2013.09.024 CrossRefGoogle Scholar
  29. Tawinteung N, Parkpian P, DeLaune R, Jugsujinda A (2005) Evaluation of extraction procedures for removing lead from contaminated soil. J Environ Sci Health A 40(2):385–407.  https://doi.org/10.1081/ESE-200045631 CrossRefGoogle Scholar
  30. Tóth G, Hermann T, Silva M, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309.  https://doi.org/10.1016/j.envint.2015.12.017 CrossRefGoogle Scholar
  31. Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z (2018) Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ 650:594–603.  https://doi.org/10.1016/j.scitotenv.2018.09.055 CrossRefGoogle Scholar
  32. Zhang X, Li M, Yang H, Li X, Cui Z (2018) Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manag 223:132–139.  https://doi.org/10.1016/j.jenvman.2018.06.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LBCUniversity of AveiroAveiroPortugal
  2. 2.Department of Biology and LAQV/REQUIMTEFaculty of Sciences of University of PortoPortoPortugal
  3. 3.CITAB—Centre for the Research and Technology of Agro-Environmental and Biological SciencesUniversity of Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations