Advertisement

Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3

  • Xiaolong Tang
  • Yiran Shi
  • Honghong YiEmail author
  • Fengyu Gao
  • Shunzheng Zhao
  • Kun Yang
  • Runcao Zhang
  • Wenda Ji
  • Yingli Ma
  • Chengzhi Wang
Research Article
  • 20 Downloads

Abstract

A series of MnCoOx flower-like hollow microspheres with various molecular proportions of reactant were prepared through simple solvothermal method for the ammonia selective catalytic reduction (SCR) at low temperatures. The as-prepared samples have been applied by various characterization techniques to explore the formation process of the morphology and physicochemical properties. The Mn(1)Co(1)Ox presented the optimal intrinsic catalytic performance (95% NOx conversion at 75 °C), favorable thermal stability, and strong SO2 resistance. The excellent properties mainly related to its higher specific surface area and abundant active sites originated from hollow microsphere special structure consists of abundant nanosheets, robust redox properties beneficial for the strong interaction between the manganese and cobalt, larger number of acidic sites and stronger acid strength, etc., which collaboratively dominate its catalytic properties of NH3-SCR at low temperatures.

Keywords

Hollow flower-like microsphere Nanosheet self-assembly Mixed oxide NH3-SCR 

Notes

Funding information

This work was financially supported by the National Key R&D Program of China (2017YFC0210303), National Natural Science Foundation of China (U1660109, 21806009), Project funded by China Postdoctoral Science Foundation (2018 M631344), and Fundamental Research Funds for the Central Universities (FRF-TP-18-019A1).

References

  1. Aguilera DA, Perez A, Molina R, Moreno S (2011) Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B-environ 104:144–150.  https://doi.org/10.1016/j.apcatb.2011.02.019 CrossRefGoogle Scholar
  2. Bin F, Song C, Lv G, Song J, Cao X, Pang H, Wang K (2012) Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia: a comparison between Co/ZSM-5 and Co/SBA-15. J Phys Chem 116:26262–26274.  https://doi.org/10.1021/jp303830x CrossRefGoogle Scholar
  3. Cai S, Liu J, Zha K, Li H, Shi L, Zhang D (2017) A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts. Nanoscale 9:5648–5657.  https://doi.org/10.1039/C6NR09917C CrossRefGoogle Scholar
  4. Chang T, Shen Z, Huang Y, Lu J, Ren D, Sun J, Cao J, Liu H (2018) Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chem Eng J 348:15–25.  https://doi.org/10.1016/j.cej.2018.04.186 CrossRefGoogle Scholar
  5. Chen B, Liu N, Liu X, Zhang R, Li Y, Li Y, Sun X (2011) Study on the direct decomposition of nitrous oxide over Fe-beta zeolites from experiment to theory. Catal Today 175:245–255.  https://doi.org/10.1016/j.cattod.2011.04.010 CrossRefGoogle Scholar
  6. Chen L, Li J, Ge M (2010) DRIFT Study on Cerium−Tungsten Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3. Environ Sci Technol 44:9590–9596.  https://doi.org/10.1021/es102692b CrossRefGoogle Scholar
  7. Cheng JH, Pan CJ, Lee JF, Chen JM, Guignard M, Delmas C, Hwang BJ (2014) Simultaneous reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 as evidenced by X-ray absorption spectroscopy during electrochemical sodium intercalation. Chem Mater 26:1219–1225.  https://doi.org/10.1021/cm403597h CrossRefGoogle Scholar
  8. Dai Y, Li JH, Peng Y, Tang XF (2012) Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature. Acta Phys -Chim Sin 28:1771–1776.  https://doi.org/10.3866/pku.whxb201204175 CrossRefGoogle Scholar
  9. Fei Z, Yang Y, Wang M, Tao Z, Liu Q, Chen XH, Qiao X (2018) Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3. Chem Eng J 353:930–939.  https://doi.org/10.1016/j.cej.2018.07.198 CrossRefGoogle Scholar
  10. Gao F, Tang X, Yi H, Chu C, Li N, Li J, Zhao S (2017a) In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem Eng J 332:525–537.  https://doi.org/10.1016/j.cej.2017.04.006 CrossRefGoogle Scholar
  11. Gao F, Tang X, Yi H, Li J, Zhao S, Wang J, Chu C, Li C (2017b) Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem Eng J 317:20–31.  https://doi.org/10.1016/j.cej.2017.02.042 CrossRefGoogle Scholar
  12. Gao F, Tang X, Yi H, Zhao S, Wang J, Shi Y, Meng X (2018) Novel Co– or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3 – SCR of NOx at low temperature. Appl Surf Sci 443:103–113.  https://doi.org/10.1016/j.apsusc.2018.02.151 CrossRefGoogle Scholar
  13. Gao F, Tang X, Yi H, Zhao S, Wang J, Gu T (2019) Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl Surf Sci 466:411–424.  https://doi.org/10.1016/j.apsusc.2018.09.227 CrossRefGoogle Scholar
  14. Gao G, Shi J-W, Fan Z, Gao C, Niu C (2017c) MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem Eng J 325:91–100.  https://doi.org/10.1016/j.cej.2017.05.059 CrossRefGoogle Scholar
  15. Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvåg H (2009) Synthesis and properties of layered-structured Mn5O8 nanorods. J Phys Chem C 114:922–928.  https://doi.org/10.1021/jp9097606 CrossRefGoogle Scholar
  16. Hu H, Cai SX, Li HR, Huang L, Shi LY, Zhang DS (2015a) In situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NOx with NH3. J Phys Chem C 119:22924–22933.  https://doi.org/10.1021/acs.jpcc.5b06057 CrossRefGoogle Scholar
  17. Hu H, Cai SX, Li HR, Huang L, Shi LY, Zhang DS (2015b) Mechanistic aspects of deNO(x) processing over TiO2 supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis. ACS Catal 5:6069–6077.  https://doi.org/10.1021/acscatal.5b01039 CrossRefGoogle Scholar
  18. Hu X, Huang L, Zhang J, Li H, Zha K, Shi L, Zhang D (2018) Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3−xO4 as highly effective catalysts for low temperature SCR of NOx with NH3. J Mater Chem A 6:2952–2963.  https://doi.org/10.1039/C7TA08000J CrossRefGoogle Scholar
  19. Jin R, Liu Y, Wu Z, Wang H, Gu T (2010) Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere 78:1160–1166.  https://doi.org/10.1016/j.chemosphere.2009.11.049 CrossRefGoogle Scholar
  20. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269.  https://doi.org/10.1016/j.apcata.2007.05.024 CrossRefGoogle Scholar
  21. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B-environ 3:173–189.  https://doi.org/10.1016/0926-3373(93)E0034-9 CrossRefGoogle Scholar
  22. Li C, Tang X, Yi H, Wang L, Cui X, Chu C, Yu Q (2018) Rational design of template-free MnOx-CeO2 hollow nanotube as de-NOx catalyst at low temperature. Appl Surf Sci 428:924–932.  https://doi.org/10.1016/j.apsusc.2017.09.131 CrossRefGoogle Scholar
  23. Li L, Cheah Y, Ko Y, Teh P, Wee G, Wong C, Srinivasan M (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem 1:10935–10941.  https://doi.org/10.1039/C3TA11549F CrossRefGoogle Scholar
  24. Li Q, Meng M, Zou ZQ, Li XG, Zha YQ (2009) Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts. J Hazard Mater 161:366–372.  https://doi.org/10.1016/j.jhazmat.2008.03.103 CrossRefGoogle Scholar
  25. Li Y, Wan Y, Li YP, Zhan SH, Guan QX, Tian Y (2016) Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets. ACS Appl Mater Interfaces 8:5224–5233.  https://doi.org/10.1021/acsami.5b10264 CrossRefGoogle Scholar
  26. Lian Z, Liu F, He H, Shi X, Mo J, Wu Z (2014) Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem Eng J 250:390–398.  https://doi.org/10.1016/j.cej.2014.03.065 CrossRefGoogle Scholar
  27. Liu FD, Shan WP, Lian ZH, Xie LJ, Yang WW, He H (2013) Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Cat Sci Technol 3:2699–2707.  https://doi.org/10.1039/C3CY00326D CrossRefGoogle Scholar
  28. Long RQ, Yang RT (2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst. J Catal 207:224–231.  https://doi.org/10.1006/jcat.2002.3528 CrossRefGoogle Scholar
  29. Lu Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interfaces 6:4186–4195.  https://doi.org/10.1021/am405858v CrossRefGoogle Scholar
  30. Meng B, Zhao Z, Wang X, Liang J, Qiu J (2013) Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes. Appl Catal B-environ 129:491–500.  https://doi.org/10.1016/j.apcatb.2012.09.040 CrossRefGoogle Scholar
  31. Meng DM, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ (2015) A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catal 5:5973–5983.  https://doi.org/10.1021/acscatal.5b00747 CrossRefGoogle Scholar
  32. Meng DM, Zhan WC, Guo Y, Guo YL, Wang YS, Wang L, Lu GZ (2016) A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: effect of the calcination temperature. J Mol Catal A-chem 420:272–281.  https://doi.org/10.1016/j.molcata.2016.04.028 CrossRefGoogle Scholar
  33. Qi G, Yang RT (2004) Characterization and FTIR studies of MnOx−CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J Phys Chem B 108:15738–15747.  https://doi.org/10.1021/jp048431h CrossRefGoogle Scholar
  34. Qi GS, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B-environ 51:93–106.  https://doi.org/10.1016/j.apcatb.2004.01.023 CrossRefGoogle Scholar
  35. Roy S, Hegde MS, Madras G (2019) Catalysis for NOx abatement. Appl Energy 86:2283–2297.  https://doi.org/10.1016/j.apenergy.2009.03.022 CrossRefGoogle Scholar
  36. Shi J-W, Gao G, Fan Z, Gao C, Wang B, Wang Y, Li Z, He C, Niu C (2018) NiyCo1-yMn2Ox microspheres for the selective catalytic reduction of NOx with NH3: the synergetic effects between Ni and Co for improving low-temperature catalytic performance. Appl Catal A Gen 560:1–11.  https://doi.org/10.1016/j.apcata.2018.04.033 CrossRefGoogle Scholar
  37. Shi Y, Tang X, Yi H, Gao F, Zhao S, Wang J, Zhang R (2019) Controlled synthesis of spinel-type mesoporous Mn–Co rods for SCR of NOx with NH3 at low temperature. Ind Eng Chem Res 58:3606–3617.  https://doi.org/10.1021/acs.iecr.8b05223 CrossRefGoogle Scholar
  38. Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY (2017) The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl Catal A Gen 531:129–138.  https://doi.org/10.1016/j.apcata.2016.10.027 CrossRefGoogle Scholar
  39. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83.  https://doi.org/10.1016/j.jcat.2012.01.003 CrossRefGoogle Scholar
  40. Wan YP, Zhao WR, Tang Y, Li L, Wang HJ, Cui YL, Gu JL, Li YS, Shi JL (2014) Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl Catal B-environ 148:114–122.  https://doi.org/10.1016/j.apcatb.2013.10.049 CrossRefGoogle Scholar
  41. Wang XM, Li XY, Zhao QD, Sun WB, Tade M, Liu SM (2016) Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3. Chem Eng J 288:216–222.  https://doi.org/10.1016/j.cej.2015.12.002 CrossRefGoogle Scholar
  42. Wang YL, Ge CZ, Zhan L, Li C, Qiao WM, Ling LC (2012) MnOx-CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Ind Eng Chem Res 51:11667–11673.  https://doi.org/10.1021/ie300555f CrossRefGoogle Scholar
  43. Wu Z, Jiang B, Liu Y, Wang H, Jin R (2007) DRIFT study of manganese titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environ Sci Technol 41:5812–5817.  https://doi.org/10.1021/es0700350 CrossRefGoogle Scholar
  44. Xu L, Li XS, Crocker M, Zhang ZS, Zhu AM, Shi C (2013) A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J Mol Catal A-chem 378:82–90.  https://doi.org/10.1016/j.molcata.2013.05.021 CrossRefGoogle Scholar
  45. Yang LX, Zhu YJ, Tong H, Wang WW, Cheng GF (2006) Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J Solid State Chem 179:1225–1229.  https://doi.org/10.1016/j.jssc.2006.01.033 CrossRefGoogle Scholar
  46. Yang NZ, Guo RT, Pan WG, Chen QL, Wang QS, Lu CZ (2016) The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel 169:87–92.  https://doi.org/10.1016/j.fuel.2015.12.009 CrossRefGoogle Scholar
  47. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study. Appl Catal B-environ 110:71–80.  https://doi.org/10.1016/j.apcatb.2011.08.027 CrossRefGoogle Scholar
  48. Yu Y, Miao J, Wang J, He C, Chen J (2017) Facile synthesis of CuSO4/TiO2 catalysts with superior activity and SO2 tolerance for NH3-SCR: physicochemical properties and reaction mechanism. Cat Sci Technol 7:1590–1601.  https://doi.org/10.1039/C6CY02626E CrossRefGoogle Scholar
  49. Yu Y, Chen C, He C, Miao J, Chen J (2018a) In situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts. ChemCatChem 11:979–984.  https://doi.org/10.1002/cctc.201801718 CrossRefGoogle Scholar
  50. Yu Y, Miao J, He C, Chen J, Li C, Douthwaite M (2018b) The remarkable promotional effect of SO2 on Pb-poisoned V2O5-WO3/TiO2 catalysts: an in-depth experimental and theoretical study. Chem Eng J 338:191–201.  https://doi.org/10.1016/j.cej.2018.01.031 CrossRefGoogle Scholar
  51. Yu Y, Chen C, Ma M, Douthwaite M, He C, Miao J, Li C (2019) SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3/TiO2 NH3-SCR catalysts: from experimental work to theoretical study. Chem Eng J 361:820–829.  https://doi.org/10.1016/j.cej.2018.12.149 CrossRefGoogle Scholar
  52. Zhan SH, Qiu MY, Yang SS, Zhu DD, Yu HB, Li Y (2014) Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3. J Mater Chem 2:20486–20493.  https://doi.org/10.1039/C4TA04807E CrossRefGoogle Scholar
  53. Zhang DS, Zhang L, Shi LY, Fang C, Li HR, Gao RH, Huang L, Zhang JP (2013a) In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 5:1127–1136.  https://doi.org/10.1039/C2NR33006G CrossRefGoogle Scholar
  54. Zhang L, Zhang DS, Zhang JP, Cai SX, Fang C, Huang L, Li HR, Gao RH, Shi LY (2013b) Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale 5:9821–9829.  https://doi.org/10.1039/C3NR03150K CrossRefGoogle Scholar
  55. Zhang L, Shi LY, Huang L, Zhang JP, Gao RH, Zhang DS (2014) Rational design of high-performance DeNO(x) catalysts cased on MnxCo3-xO4 nanocages derived from metal-organic frameworks. ACS Catal 4:1753–1763.  https://doi.org/10.1021/cs401185c CrossRefGoogle Scholar
  56. Zhang Z, Zhang Y, Su Q, Wang Z, Li Q, Gao X (2010) Determination of intermediates and mechanism for soot combustion with NOx O2 on potassium-supported Mg−Al hydrotalcite mixed oxides by in situ FTIR. Environ Sci Technol 44:8254–8258.  https://doi.org/10.1021/es102363f CrossRefGoogle Scholar
  57. Zheng Y, Wang W, Jiang D, Zhang L (2016) Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chem Eng J 284:21–27.  https://doi.org/10.1016/j.cej.2015.08.137 CrossRefGoogle Scholar
  58. Zhou G, Zhong B, Wang W, Guan X, Huang B, Ye D, Wu H (2011) In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts. Catal Today 175:157–163.  https://doi.org/10.1016/j.cattod.2011.06.004 CrossRefGoogle Scholar
  59. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3:1154–1164.  https://doi.org/10.1021/cs400068v CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental Engineering, School of Energy and Environmental EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Resource-oriented Treatment of Industrial PollutantsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations