Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 31, pp 32476–32487 | Cite as

The impact of polar fraction of the fine particulate matter on redox responses in different rat tissues

  • Joaquim de Paula Ribeiro
  • Ana Cristina Kalb
  • Sabrina de Bastos Maya
  • Adriana GiodaEmail author
  • Pablo Elias Martinez
  • José Maria Monserrat
  • Braulio D. Jiménez-Vélez
  • Carolina Rosa Gioda
Research Article

Abstract

Particulate matter (PM) contains different chemical substances that have been associated with health effects and an increased risk of mortality due to their toxicity. In this study, fine particulate matter (PM2.5) samples were collected in a region with rural characteristics (Seropédica (Se)) and another with some industries (Duque de Caxias (DC)) (Brazil, RJ). Rats were exposed to PM2.5 extracts daily for 25 days at different dilutions: 10×, 5×, and a concentrated solution (CS). Biochemical analyses were investigated for total antioxidant capacity (ACAP), lipid peroxidation (LPO) levels, reduced glutathione (GSH) concentration, activity of glutamate cysteine ligase (GCL), and activity of glutathione S-transferase (GST). The liver showed a significant increase in GCL (DC-5×, DC-CS and Se-CS) and GST activities (DC-CS and Se-CS) in both regions when compared to the control group. In the renal cortex, GCL activity decreased in most of the tested groups while GST activity increased only in the 5× groups of both regions (DC and Se). In the renal medulla, GCL activity decreased for Se-10× and DC-CS but increased for Se-5×, and GST activity increased in the Se-10×, DC-5×, and DC-CS groups. Lung GCL increased in all groups for both regions. Moreover, this organ also showed an increase in GST activity when higher metal concentrations were present (5× and CS). TBARS levels were increased for all tissues in most tested concentrations. These data indicate that soluble compounds (e.g., metals) from PM2.5 sampled in areas with different pollution indexes can change the redox status and cause damage to different tissues.

Keywords

Glutathione Glutamate cysteine ligase Glutathione S-transferase Lipoperoxidation Particulate matter 

Notes

Acknowledgments

The authors thank Brazilian Agencies CNPq, CAPES, and FAPERJ for financial support and INEA-RJ for providing PM2.5 samples. J.M. Monserrat is a productivity research from CNPq (PQ 308539/2016-8). A. Gioda thanks CNPq for the Bolsa de Produtividade and FAPERJ for the Auxilio Cientista do Nosso Estado.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelhalim, Mohamed A, Kassem A, Al-Ayed MS, bdelmottaleb Moussa SA (2015) The effects of intraperitoneal administration of gold nanoparticles size and exposure duration on oxidative and antioxidants levels in various rat organs. Pak J Pharm Sci 28(2):705–712Google Scholar
  2. Amado, Lund L, Garcia ML, Ramos PB, Freitas RF, Zafalon B, Ferreira JLR, Yunes JS, Monserrat JM (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ 407(6). Elsevier B.V.):2115–2123.  https://doi.org/10.1016/j.scitotenv.2008.11.038 CrossRefGoogle Scholar
  3. Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, Navab M, Harkema J, Sioutas C, Lusis AJ, Nel AE (2008) Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102(5):589–596.  https://doi.org/10.1161/CIRCRESAHA.107.164970 CrossRefGoogle Scholar
  4. Bai N, Khazaei M, van Eeden SF, Laher I (2007) The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol Ther 113(1):16–29.  https://doi.org/10.1016/j.pharmthera.2006.06.005 CrossRefGoogle Scholar
  5. Bellmann S, Carlander D, Fasano A, Scimeca JA, Waldman WJ, Tsytsikova L, Canady R, Pereira DIA (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. WIREs Nanomed Nanobiotechnol 7:609–622.  https://doi.org/10.1002/wnan.1333 CrossRefGoogle Scholar
  6. Belyaeva EA, Korotkov SM, Saris NE (2011) In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: a comparison of copper and mercury with cadmium. J Trace Elem Med Biol 25(SUPPL. 1). Elsevier GmbH):S63–S73.  https://doi.org/10.1016/j.jtemb.2010.10.007 CrossRefGoogle Scholar
  7. Biswas SK, Rahman I (2009) Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Asp Med 30(1–2). Elsevier Ltd):60–76.  https://doi.org/10.1016/j.mam.2008.07.001 CrossRefGoogle Scholar
  8. Boveris A, Musacco-Sebio R, Ferrarotti N, Saporito-Magriñá C, Torti H, Massot F, Repetto MG (2012) The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver. J Inorg Biochem 116. Elsevier Inc:63–69.  https://doi.org/10.1016/j.jinorgbio.2012.07.004 CrossRefGoogle Scholar
  9. Brook RD, Robert L, Bard M, Morishita JT, Dvonch L, Wang H-y, Yang C, Spino et al (2014) Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ Health Perspect 2013(March):624–631.  https://doi.org/10.1289/ehp.1306595 CrossRefGoogle Scholar
  10. Chen S-j, Wang J, Wang T, Wang T, Mai B-x, Massey SL (2016) Science of the total environment seasonal variations and source apportionment of complex polycyclic aromatic hydrocarbon mixtures in particulate matter in an electronic waste and urban area in South China. Sci Total Environ 573. Elsevier B.V.:115–122.  https://doi.org/10.1016/j.scitotenv.2016.08.101 CrossRefGoogle Scholar
  11. Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Li Q et al (2015) Interaction of four low dose toxic metals with essential metals in brain, liver and kidneys of mice on sub-chronic exposure. Environ Toxicol Pharmacol 39(1). Elsevier B.V.):280–291.  https://doi.org/10.1016/j.etap.2014.11.030 CrossRefGoogle Scholar
  12. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ (2015) Neurotoxicity of traffic-related air pollution. NeuroToxicology 59:133–139.  https://doi.org/10.1016/j.neuro.2015.11.008 CrossRefGoogle Scholar
  13. Folkmann JK, Risom L, Hansen CS, Loft S, Møller P (2007) Oxidatively damaged DNA and inflammation in the liver of dyslipidemic ApoE-/- mice exposed to diesel exhaust particles. Toxicology 237(1–3):134–144.  https://doi.org/10.1016/j.tox.2007.05.009 CrossRefGoogle Scholar
  14. Fuentes-Mattei E, Rivera E, Gioda A, Sanchez-Rivera D, Roman-Velazquez FR, Jimenez-Velez BD (2010) Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM(2.5) organic extract from Puerto Rico. Toxicol Appl Pharmacol 243(3):381–389.  https://doi.org/10.1016/j.taap.2009.12.009 CrossRefGoogle Scholar
  15. García-Niño WR, Pedraza-Chaverrí J (2014) Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 69(July):182–201.  https://doi.org/10.1016/j.fct.2014.04.016 CrossRefGoogle Scholar
  16. Gioda A, Amaral BS, Monteiro ILG, Saint’Pierre TD (2011) Chemical composition, sources, solubility, and transport of aerosol trace elements in a tropical region. J Environ Monit 13(8):2134–2142.  https://doi.org/10.1039/c1em10240k CrossRefGoogle Scholar
  17. Habig WH, Jakoby WB (1981) Glutathione S-transferases (rat and human). Methods Enzymol 77(January):218–231CrossRefGoogle Scholar
  18. Hussain M, Madl P, Khan A (2011) Lung deposition predictions of airborne particles and the emergence of contemporary diseases, part-I. Health 2(2):51–59 http://www.thehealthj.com/may_2011/lung_deposition_predictions_of_airborne_particles.pdf Google Scholar
  19. Jihen EH, Sonia S, Fatima H, Tahar SM, Abdelhamid K (2011) Interrelationships between cadmium, zinc and antioxidants in the liver of the rat exposed orally to relatively high doses of cadmium and zinc. Ecotoxicol Environ Saf 74(7). Elsevier):2099–2104.  https://doi.org/10.1016/j.ecoenv.2011.06.008 CrossRefGoogle Scholar
  20. Kalinowski DS, Stefani C, Toyokuni S, Ganz T, Anderson GJ, Subramaniam NV, Trinder D et al (2016) Redox cycling metals: pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim Biophys Acta Mol Cell Res 1863(4). Elsevier B.V.):727–748.  https://doi.org/10.1016/j.bbamcr.2016.01.026 CrossRefGoogle Scholar
  21. Kato T, Totsuka Y, Hasei T, Watanabe T, Wakabayashi K, Kinae N, Masuda S (2011) In vivo examination of the genotoxicity of the urban air and surface soil pollutant, 3,6-dinitrobenzo[ e ]pyrene, with intraperitoneal and intratracheal administration. Environ Toxicol 28(10):588–594.  https://doi.org/10.1002/tox.20754 CrossRefGoogle Scholar
  22. Ku T, Chen M, Li B, Yang Y, Li G, Sang N (2016) Synergistic effects of particulate matter (PM 2.5 ) and sulfur dioxide (SO 2 ) on neurodegeneration via the microRNA-mediated regulation of tau phosphorylation. Toxicol Res 6(1). Royal Society of Chemistry):7–16.  https://doi.org/10.1039/C6TX00314A CrossRefGoogle Scholar
  23. Lee TK, Li L, Ballatori N (1997) Hepatic glutathione and glutathione S-conjugate transport mechanisms. Yale J Biol Med 70(4):287–300Google Scholar
  24. Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, Münzel T (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40(20):1590–1596.  https://doi.org/10.1093/eurheartj/ehz135 CrossRefGoogle Scholar
  25. Li W, Wang C, Wang H, Chen J, Yuan C, Li T, Wang W et al (2014) Distribution of atmospheric particulate matter (PM) in rural field, rural village and urban areas of Northern China. Environ Pollut 185. Elsevier Ltd:134–140.  https://doi.org/10.1016/j.envpol.2013.10.042 CrossRefGoogle Scholar
  26. Liu CM, Ma JQ, Sun YZ (2012) Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp Toxicol Pathol 64(6). Elsevier GmbH):575–582.  https://doi.org/10.1016/j.etp.2010.11.016 CrossRefGoogle Scholar
  27. Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Admit one: how essential and nonessential metals gain entrance into the cell. Metallomics 4(7):593–605.  https://doi.org/10.1039/c2mt00185c CrossRefGoogle Scholar
  28. Massone CG, Wagener ALR, Abreu HM, Gioda A (2015) Hydrocarbon concentration and source appraisal in atmospheric particulate matter (PM2.5) of an urban tropical area. Environ Sci Pollut Res 22(19):14767–14780.  https://doi.org/10.1007/s11356-015-4695-0 CrossRefGoogle Scholar
  29. Mateus VL, Monteiro ILG, Rocha RCC, Saint’Pierre TD, Gioda A (2013) Study of the chemical composition of particulate matter from the Rio de Janeiro Metropolitan Region, Brazil, by inductively coupled plasma-mass spectrometry and optical emission spectrometry. Spectrochim Acta B At Spectrosc 86. Elsevier B.V:131–136.  https://doi.org/10.1016/j.sab.2013.03.003 CrossRefGoogle Scholar
  30. Messarah M, Klibet F, Boumendjel A, Abdennour C, Bouzerna N, Boulakoud MS, El Feki A (2012) Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol 64(3). Elsevier GmbH):167–174.  https://doi.org/10.1016/j.etp.2010.08.002 CrossRefGoogle Scholar
  31. Mirowsky JE, Jin L, Thurston G, Lighthall D, Tyner T, Horton L, Galdanes K et al (2015) In vitro and in vivo toxicity of urban and rural particulate matter from California. Atmospheric Environment 103. Elsevier Ltd:256–262.  https://doi.org/10.1016/j.atmosenv.2014.12.051 CrossRefGoogle Scholar
  32. Nebendahl K (2000) Routes of administration. In: Krinke GJ (ed) The laboratory rat, vol 16. Elsevier, London, pp 463–483.  https://doi.org/10.1016/B978-012426400-7.50063-7 CrossRefGoogle Scholar
  33. Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in White Sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63(4):447–463.  https://doi.org/10.1016/S0166-445X(02)00204-7 CrossRefGoogle Scholar
  34. Olawoyin R, Schweitzer L, Zhang K, Okareh O, Slates K (2018) Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicol Environ Saf 148(June 2017). Elsevier Inc):72–81.  https://doi.org/10.1016/j.ecoenv.2017.09.069 CrossRefGoogle Scholar
  35. Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blanchard M, Host S, Pascal L, Larrieu S (2014) Short-term impacts of particulate matter (PM10, PM10-2.5, PM2.5) on mortality in nine French cities. Atmos Environ.  https://doi.org/10.1016/j.atmosenv.2014.06.030 CrossRefGoogle Scholar
  36. Paßlack N, Mainzer B, Lahrssen-Wiederholt M, Schafft H, Palavinskas R, Breithaupt A, Neumann K, Jürgen, Zentek (2014) Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys. SpringerPlus 3(1):343.  https://doi.org/10.1186/2193-1801-3-343 CrossRefGoogle Scholar
  37. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97. Elsevier Masson SAS:55–74.  https://doi.org/10.1016/j.ejmech.2015.04.040 CrossRefGoogle Scholar
  38. Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 261(1–2):1–8.  https://doi.org/10.1016/j.tox.2009.04.035 CrossRefGoogle Scholar
  39. Pope CA III (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108:713–723.  https://doi.org/10.1289/ehp.00108s4713 CrossRefGoogle Scholar
  40. Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mutat Res Fundam Mol Mech Mutagen 533:227–241.  https://doi.org/10.1016/j.mrfmmm.2003.07.015 CrossRefGoogle Scholar
  41. Qin Z, Hou H, Feng F, Wu J, Han B, Yang W, Zhang L et al (2017) Fine particulate matter exposure induces cell cycle arrest and inhibits migration and invasion of human extravillous trophoblast, as determined by an ITRAQ-based quantitative proteomics strategy. Reprod Toxicol 74. Elsevier Inc:10–22.  https://doi.org/10.1016/j.reprotox.2017.08.014 CrossRefGoogle Scholar
  42. Reckziegel P, Dias VT, Benvegnú DM, Boufleur N, Barcelos RCS, Segat HJ, Pase CS, dos Santos CMM, Flores ÉMM, Bürger ME (2016) Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol Rep 3. Elsevier Ireland Ltd:351–356.  https://doi.org/10.1016/j.toxrep.2016.02.005 CrossRefGoogle Scholar
  43. Ribeiro J d P, Kalb AC, Campos PP, De La Cruz ARH, Martinez PE, Gioda A, de Souza MM, Gioda CR (2016) Toxicological effects of particulate matter (PM2.5) on rats: bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity. Chemosphere 163:569–577.  https://doi.org/10.1016/j.chemosphere.2016.07.094 CrossRefGoogle Scholar
  44. Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, Valença SS, Saldiva PH, Faffe DS, Zin WA (2011) Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 23(December 2010):257–267.  https://doi.org/10.3109/08958378.2011.566290 CrossRefGoogle Scholar
  45. Rodríguez-Cotto RI, Ortiz-Martínez MG, Rivera-Ramírez E, Mateus VL, Amaral BS, Jiménez-Vélez BD, Gioda A (2014) Particle pollution in Rio de Janeiro, Brazil: increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human lung cells. Environ Pollut 194:112–120.  https://doi.org/10.1016/j.envpol.2014.07.010 CrossRefGoogle Scholar
  46. Sá RC, Zeman KL, Bennett WD, Kim Prisk G, Darquenne C (2017) Regional ventilation is the main determinant of alveolar deposition of coarse particles in the supine healthy human lung during tidal breathing. J Aerosol Med Pulm Drug Deliv 30(5):322–331.  https://doi.org/10.1089/jamp.2016.1336 CrossRefGoogle Scholar
  47. Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37(5):582–593.  https://doi.org/10.1016/j.freeradbiomed.2004.03.012 CrossRefGoogle Scholar
  48. Shrey K, Suchit A, Deepika D, Shruti K, Vibha R (2011) Air pollutants: the key stages in the pathway towards the development of cardiovascular disorders, Environmental Toxicology and Pharmacology. Elsevier B.V.  https://doi.org/10.1016/j.etap.2010.09.002 CrossRefGoogle Scholar
  49. Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175(1–3):600–607.  https://doi.org/10.1016/j.jhazmat.2009.10.047 CrossRefGoogle Scholar
  50. Siedlinski M, Postma DS, Van Diemen CC, Blokstra A, Smit HA, Marike Boezen H (2008) Lung function loss, smoking, vitamin C intake, and polymorphisms of the glutamate-cysteine ligase genes. Am J Respir Crit Care Med 178(1):13–19.  https://doi.org/10.1164/rccm.200711-1749OC CrossRefGoogle Scholar
  51. Simkhovich BZ, Kleinman MT, Kloner RA (2008) Air pollution and cardiovascular injury. J Am Coll Cardiol 52(9):719–726.  https://doi.org/10.1016/j.jacc.2008.05.029 CrossRefGoogle Scholar
  52. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2015) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 1(September):1–37.  https://doi.org/10.1007/s00204-015-1579-5 CrossRefGoogle Scholar
  53. Vreeland H, Weber R, Bergin M, Greenwald R, Golan R, Russell AG, Verma V, Sarnat JA (2017) Oxidative potential of PM2.5 during Atlanta rush hour: measurements of in-vehicle dithiothreitol (DTT) activity. Atmos Environ 165. Elsevier Ltd:169–178.  https://doi.org/10.1016/j.atmosenv.2017.06.044 CrossRefGoogle Scholar
  54. Wang Y, Xiong L, Tang M (2017) Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 37(6):644–667.  https://doi.org/10.1002/jat.3451 CrossRefGoogle Scholar
  55. Weber SA, Insaf TZ, Hall ES, Talbot TO, Huff AK (2016) Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan Area using hierarchical Bayesian model estimates. Environ Res 151. Elsevier:399–409.  https://doi.org/10.1016/j.envres.2016.07.012 CrossRefGoogle Scholar
  56. Wei T, Tang M (2018) Biological effects of airborne fine particulate matter (PM 2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol 60(July). Elsevier):195–201.  https://doi.org/10.1016/j.etap.2018.04.004 CrossRefGoogle Scholar
  57. White CC, Viernes H, Krejsa CM, Botta D, Kavanagh TJ (2003) Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal Biochem 318(2):175–180.  https://doi.org/10.1016/S0003-2697(03)00143-X CrossRefGoogle Scholar
  58. Williams KM, Franzi LM, Last JA (2013) Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung. Toxicol Appl Pharmacol 266(1). Elsevier Inc):48–55.  https://doi.org/10.1016/j.taap.2012.10.017 CrossRefGoogle Scholar
  59. Wu J-Z, Ge D-D, Zhou L-F, Hou L-Y, Zhou Y, Li Q-Y (2018) Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med 4(2). Elsevier Masson SAS):95–102.  https://doi.org/10.1016/j.cdtm.2018.04.001 CrossRefGoogle Scholar
  60. Yi S, Fang, Zhang F, Qu, Ding W (2011) Water-insoluble fraction of airborne particulate matter (PM 10) induces oxidative stress in human lung epithelial A549 cells. Environ Toxicol 29(2):1–8.  https://doi.org/10.1002/tox.21750 CrossRefGoogle Scholar
  61. Zar J (2010) Biostatistical analysis. In: Pearson (ed) Journal of Chemical Information and Modeling. Fifth. Prentice-Hall/Pearson, United States of AmericaGoogle Scholar
  62. Zou A-P, Li N, Cowley AW (2001) Production and actions of superoxide in the renal medulla. Hypertension 37(2):547–553.  https://doi.org/10.1161/01.HYP.37.2.547 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Joaquim de Paula Ribeiro
    • 1
    • 2
  • Ana Cristina Kalb
    • 1
    • 2
  • Sabrina de Bastos Maya
    • 1
  • Adriana Gioda
    • 3
    Email author
  • Pablo Elias Martinez
    • 1
    • 2
  • José Maria Monserrat
    • 1
    • 2
  • Braulio D. Jiménez-Vélez
    • 4
  • Carolina Rosa Gioda
    • 1
    • 2
  1. 1.Instituto de Ciências BiológicasUniversidade Federal do Rio Grande, FURGRio GrandeBrazil
  2. 2.Programa de Pós Graduação em Ciências FisiológicasInstituto de Ciências Biológicas, FURGRio GrandeBrazil
  3. 3.Department of ChemistryPontifical Catholic University of Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil
  4. 4.Department of Biochemistry, Medical Sciences CampusUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations