Environmental Science and Pollution Research

, Volume 26, Issue 31, pp 31609–31622 | Cite as

Method development for simultaneous determination of polar and nonpolar pesticides in surface water by low-temperature partitioning extraction (LTPE) followed by HPLC-ESI-MS/MS

  • André Luis Correa de Barros
  • Cíntia Grossi de Abreu
  • Camila Cristina Rodrigues Ferreira da Cunha
  • Daniel Aparecido da Silva Rodrigues
  • Robson José de Cássia Franco Afonso
  • Gilmare Antônia da SilvaEmail author
Research Article


During this research, chemometric approaches were applied for optimization of the low-temperature partitioning extraction (LTPE) for the simultaneous analysis of the pesticides: acephate, difenoconazole, fenamidone, fluazifop, fluazinam, methamidophos, and thiamethoxam from surface water samples and determination by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. It was used the 23 full factorial and the Doehlert experimental designs. The extraction technique was optimized by evaluating the effects of the three variables: sample pH, ionic strength (addition of Na2HPO4), and organic solvent volume. Considering the interest to find an optimal condition for all analytes simultaneously, the best extraction parameters found were as follows: pH = 5.33, concentration of Na2HPO4 = 0.0088 mol L−1 and organic phase volume = 4.5 mL. The optimized methodology showed LOD and LOQ levels from 0.33 to 8.13 ng L−1 and from 1.09 to 26.84 ng L−1, respectively. The recovery values ranged from 38.37 and 99.83% and the RSD values varied from 2.33 to 18.92%. The method was applied to surface water analysis sampled in areas with intensive agricultural practices in Ouro Branco City, Minas Gerais, Brazil. The difenoconazole was detected in concentrations between 12.53 and 94.76 ng L−1.


Pesticides Low-temperature partitioning extraction (LTPE) Multivariate optimization Mass spectrometry HPLC Water 



We thank the Environmental Department from Ouro Branco City Hall for the very important collaboration. Finally, we would like to thank Luiz Inácio Lula da Silva, Brazil’s President from 2003 and 2011, for the historical public investment on higher education in Brazil.

Funding information

This study received financial support from the Coordination for Improvement of Higher Level Personnel (CAPES), the Foundation for Research Support of the Minas Gerais State (FAPEMIG), the National Research Council of Brazil (CNPq), and the Federal University of Ouro Preto (UFOP).


  1. Adachi N, Kinoshita H, Nishiguchi M, Takahashi M, Ouchi H, Minami T, Matsui K, Yamamura T, Motomura H, Ohtsu N, Yoshida S, Hishida S (2008) Simultaneous analysis of acephate and methamidophos in human serum by improved extraction and GC-MS. Forensic Toxicol 26:76–79. CrossRefGoogle Scholar
  2. Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts 18:779–787. CrossRefGoogle Scholar
  3. Araoud M, Douki W, Najjar MF, Kenani A (2010) Simple analytical method for determination of pesticide residues in human serum by liquid chromatography tandem mass spectrometry. J Environ Sci Health B 45:242–248. CrossRefGoogle Scholar
  4. Bakirci GT, Hişil Y (2012) Fast and simple extraction of pesticide residues in selected fruits and vegetables using tetrafluoroethane and toluene followed by ultrahigh-performance liquid chromatography/tandem mass spectrometry. Food Chem 135:1901–1913. CrossRefGoogle Scholar
  5. Bombardi LM (2017) Atlas: Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Européia, 1st edn. FFLCH- USP, São PauloGoogle Scholar
  6. Brazil (2011) Portaria MS N°2914/2011. Ministério da Saúde, Brazil Procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Ministério da Saúde, Brazil Accessed 22 Jun 2016Google Scholar
  7. Caldas SS, Gonçalves FF, Primel EG, Prestes OD, Martins ML, Zanella R (2011) Principais técnicas de preparo de amostra para a determinação de resíduos de agrotóxicos em água por cromatografia líquida com detecção por arranjo de diodos e por espectrometria de massas. Quim Nova 34:1604–1617. CrossRefGoogle Scholar
  8. Caldas SS, Bolzan CM, Guilherme JR, Silveira MAK, Escarrone ALV, Primel EG (2013) Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey. Environ Sci Pollut Res Int 20:5855–5863. CrossRefGoogle Scholar
  9. Carro AM, Fernández S, Racamonde I, García-Rodríguez D, González P, Lorenzo RA (2012) Dispersive liquid–liquid microextraction coupled with programmed temperature vaporization-large volume injection-gas chromatography–tandem mass spectrometry for multiclass pesticides in water. J Chromatogr A 1253:134–143. CrossRefGoogle Scholar
  10. D’Ascenzo G, Gentili A, Marchese S, Perret D (1998) Determination of arylphenoxypropionic herbicides in water by liquid chromatography-electrospray mass spectrometry. J Chromatogr A 813:285–297. CrossRefGoogle Scholar
  11. de Barros ALC, Schmidt FF, de Aquino SF, Afonso RJ d CF (2018) Determination of nine pharmaceutical active compounds in surface waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS. Environ Sci Pollut Res 25:19962–19974. CrossRefGoogle Scholar
  12. De Gerónimo E, Aparicio VC, Bárbaro S et al (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431. CrossRefGoogle Scholar
  13. De Oliveira KM, Lucchese G (2013) Sanitary control of pesticides in brazil: the case of methamidophos. Rev Tempus Actas Saúde Col 7:211–224Google Scholar
  14. de Pinho GP, Neves AA, de Queiroz MELR, Silvério FO (2010) Optimization of the liquid–liquid extraction method and low temperature purification (LLE–LTP) for pesticide residue analysis in honey samples by gas chromatography. Food Control 21:1307–1311. CrossRefGoogle Scholar
  15. Dong X, Zhang L, Chen M, Yang Z, Zuo Z, Wang C (2018) Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma). J Environ Sci (China) 63:126–132. CrossRefGoogle Scholar
  16. Dores EFGDC, De-Lamonica-Freire EM (2001) Contaminação do ambiente aquático por pesticidas. Estudo de caso: águas usadas para consumo humano em Primavera do Leste, Mato Grosso - análise preliminar. Quim Nova 24:27–36. CrossRefGoogle Scholar
  17. EPA (2012) Guidance for methods development and methods validation for the RCRA program. United States Environ Prot Agency, USA, pp 1–32Google Scholar
  18. Espigares M, Coca C, Fernandez-Crehuet M et al (1997) Pesticide concentrations in the waters from a section of the Guadalquivir River Basin, Spain. Environ Toxicol Water Qual 12:249–256.<249::AID-TOX8>3.0.CO;2-8 CrossRefGoogle Scholar
  19. European Food Safety Authority (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole. EFSA J 9:1967. CrossRefGoogle Scholar
  20. Farajzadeh MA, Djozan D, Mogaddam MRA, Bamorowat M (2011) Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations. J Sep Sci 34:1309–1316. CrossRefGoogle Scholar
  21. Gomes R d P, Pena CB, Rezende J et al (2017) Validation of a new high-throughput method to determine urinary S-phenylmercapturic acid using low-temperature partitioning extraction and ultra high performance liquid chromatography–mass spectrometry. J Sep Sci 40:550–557. CrossRefGoogle Scholar
  22. González-Rodríguez RM, Cancho-Grande B, Simal-Gándara J (2009) Multiresidue determination of 11 new fungicides in grapes and wines by liquid-liquid extraction/clean-up and programmable temperature vaporization injection with analyte protectants/gas chromatography/ion trap mass spectrometry. J Chromatogr A 1216:6033–6042. CrossRefGoogle Scholar
  23. Goulart SM, de Queiroz MELR, Neves AA, de Queiroz JH (2008) Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta 75:1320–1323. CrossRefGoogle Scholar
  24. Goulart SM, Alves RD, Neves AA, de Queiroz JH, de Assis TC, de Queiroz MELR (2010) Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water. Anal Chim Acta 671:41–47. CrossRefGoogle Scholar
  25. Goulart SM, Alves RD, De Paula WX et al (2012) Determination of carbamates in beverages by liquid-liquid extraction with low temperature partitioning and liquid chromatography. J Braz Chem Soc 23:1154–1165. CrossRefGoogle Scholar
  26. Hayama T, Yoshida H, Todoroki K, Nohta H, Yamaguchi M (2008) Determination of polar organophosphorus pesticides in water samples by hydrophilic interaction liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 22:2203–2210. CrossRefGoogle Scholar
  27. IBAMA (2014) Boletim de Comercialização de Agrotóxicos e Afins. de comercializacao_2000_2012.pdf. Accessed 25 Feb 2014
  28. IBGE (2016) Minas Gerais - Produção Agrícola Municipal - Lavoura Temporária (2015). = &codmun = 314590&idtema = 158&search = minas-gerais%7Couro-branco%7Cproducao-agricola-municipal-lavoura-temporaria-2015. Accessed 20 Jun 2016
  29. Ingelse BA, van Dam RCJ, Vreeken RJ et al (2001) Determination of polar organophosphorus pesticides in aqueous samples by direct injection using liquid chromatography–tandem mass spectrometry. J Chromatogr A 918:67–78. CrossRefGoogle Scholar
  30. Li S, Lu C, Zhu F, Jiang R, Ouyang G (2015) Preparation of C18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Anal Chim Acta 873:57–62. CrossRefGoogle Scholar
  31. Liu F, Bischoff G, Pestemer W, et al (2006) Multi-Residue Analysis of Some Polar Pesticides in Water Samples with SPE and LC–MS–MS. Chromatographia 63:233–237. CrossRefGoogle Scholar
  32. Magalhães EJ, Nascentes CC, Augusti R, Queiroz MELR, Silva JCC, Afonso RJCF (2012) Fast determination of benzodiazepines in human urine via liquid-liquid extraction with low temperature partitioning and LC-HRMS. Am J Anal Chem 03:118–124. CrossRefGoogle Scholar
  33. Milhome MAL, Sousa DDOB, Lima FDAF, Nascimento RF (2009) Assessment of surface and groundwater potential contamination by agricultural pesticides applied in the region of Baixo Jaguaribe, CE, Brazil. Eng Sanit Ambient 14:363–372. CrossRefGoogle Scholar
  34. Milhome MAL, Sousa PLR, Lima FAF, Nascimento RF (2015) Influence the use of pesticides in the quality of surface and groundwater located in irrigated areas of Jaguaribe, Ceara, Brazil. Int J Environ Res 9:255–262. CrossRefGoogle Scholar
  35. Montagner CC, Vidal C, Acayaba RD, Jardim WF, Jardim ICSF, Umbuzeiro GA (2014) Trace analysis of pesticides and an assessment of their occurrence in surface and drinking waters from the State of São Paulo (Brazil). Anal Methods 6:6668–6677. CrossRefGoogle Scholar
  36. Montagner CC, Vidal C, Acayaba R (2017) Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quim Nova 40:1094–1110. CrossRefGoogle Scholar
  37. Montesano MA, Olsson AO, Kuklenyik P, Needham LL, Bradman ASA, Barr DB (2007) Method for determination of acephate, methamidophos, omethoate, dimethoate, ethylenethiourea and propylenethiourea in human urine using high-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J Expo Sci Environ Epidemiol 17:321–330. CrossRefGoogle Scholar
  38. Mu X, Wang K, Chai T, Zhu L, Yang Y, Zhang J, Pang S, Wang C, Li X (2015) Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole. Environ Pollut 197:278–286. CrossRefGoogle Scholar
  39. Mu X, Chai T, Wang K, Zhu L, Huang Y, Shen G, Li Y, Li X, Wang C (2016) The developmental effect of difenoconazole on zebrafish embryos: a mechanism research. Environ Pollut 212:18–26. CrossRefGoogle Scholar
  40. Petrovic M, Farré M, de Alda ML, Perez S, Postigo C, Köck M, Radjenovic J, Gros M, Barcelo D (2010) Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. J Chromatogr A 1217:4004–4017. CrossRefGoogle Scholar
  41. Reemtsma T, Alder L, Banasiak U (2013) A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J Chromatogr A 1271:95–104. CrossRefGoogle Scholar
  42. Robles-Molina J, Lara-Ortega FJ, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1350:30–43. CrossRefGoogle Scholar
  43. Sabale SR, Tamhankar BV, Dongare MM, Mohite BS (2012) Extraction, determination and bioremediation of heavy metal ions and pesticide residues from lake water. J Bioremed Biodegrad 03:4–11. CrossRefGoogle Scholar
  44. Singh AK, White T, Spassova D, Jiang Y (1998) Physicochemical, molecular-orbital and electronic properties of acephate and methamidophos. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 119:107–117. CrossRefGoogle Scholar
  45. Tankiewicz M, Fenik J, Biziuk M (2011) Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86:8–22. CrossRefGoogle Scholar
  46. Teng M, Qi S, Zhu W, Wang Y, Wang D, Dong K, Wang C (2018) Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). Environ Pollut 233:208–217. CrossRefGoogle Scholar
  47. Teófilo RF, Ferreira MMC (2006a) Spreadsheet calculations for experimental schedules. Accessed 26 Mar 2013
  48. Teófilo RF, Ferreira MMC (2006b) Quimiometria II: Planilhas eletrônicas para cálculus de planejamentos experimentais, um tutorial. Quim Nova 29:338–350. CrossRefGoogle Scholar
  49. Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855. CrossRefGoogle Scholar
  50. Trevizan LRP, De Baptista GC, Papa G (2005) Acephate and methamidophos residues in greenhouse and in field grown tomatoes. Hortic Bras 23:38–43. CrossRefGoogle Scholar
  51. U.S. EPA (2003) U.S. EPA - Title 40: protection of environment; Part 136 – Guidelines Establishing Test Procedures for the Analysis of PollutantsGoogle Scholar
  52. Vieira HP, Neves AA, de Queiroz MELR (2007) Otimização e validação da técnica de extração líquido-líquido com partição em baixa temperatura (ELL-PBT) para piretróides em água e análise por CG. Quim Nova 30:535–540. CrossRefGoogle Scholar
  53. Wightwick AM, Bui AD, Zhang P, Rose G, Allinson M, Myers JH, Reichman SM, Menzies NW, Pettigrove V, Allinson G (2012) Environmental fate of fungicides in surface waters of a horticultural-production catchment in Southeastern Australia. Arch Environ Contam Toxicol 62:380–390. CrossRefGoogle Scholar
  54. Wode F, Reilich C, van Baar P, Dünnbier U, Jekel M, Reemtsma T (2012) Multiresidue analytical method for the simultaneous determination of 72 micropollutants in aqueous samples with ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 1270:118–126. CrossRefGoogle Scholar
  55. Xu C, Armstrong DW (2013) High-performance liquid chromatography with paired ion electrospray ionization (PIESI) tandem mass spectrometry for the highly sensitive determination of acidic pesticides in water. Anal Chim Acta 792:1–9. CrossRefGoogle Scholar
  56. Zulin Z, Huasheng H, Xinhong W, Jianqing L, Weiqi C, Li X (2002) Determination and load of organophosphorus and organochlorine pesticides at water from Jiulong River Estuary, China. Mar Pollut Bull 45:397–402. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • André Luis Correa de Barros
    • 1
  • Cíntia Grossi de Abreu
    • 2
  • Camila Cristina Rodrigues Ferreira da Cunha
    • 3
  • Daniel Aparecido da Silva Rodrigues
    • 3
  • Robson José de Cássia Franco Afonso
    • 2
  • Gilmare Antônia da Silva
    • 2
    Email author
  1. 1.Postgraduation Program in Environmental Engineering (ProAmb)Federal University of Ouro Preto (UFOP)Ouro PretoBrazil
  2. 2.Department of ChemistryFederal University of Ouro Preto (UFOP)Ouro PretoBrazil
  3. 3.Minas Chemical Network (RQ-MG)Federal University of Ouro Preto (UFOP)Ouro PretoBrazil

Personalised recommendations