Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 23, pp 24143–24161 | Cite as

Arsenic removal by copper-impregnated natural mineral tufa part II: a kinetics and column adsorption study

  • Krstimir Pantić
  • Zoran J. Bajić
  • Zlate S. Veličković
  • Jovica Z. Nešić
  • Maja B. ĐolićEmail author
  • Nataša Z. Tomić
  • Aleksandar D. Marinković
Research Article
  • 126 Downloads

Abstract

This batch and column kinetics study of arsenic removal utilized copper-impregnated natural mineral tufa (T–Cu(A–C)) under three ranges of particle size. Non-competitive kinetic data fitted by the Weber–Morris model and the single resistance mass transfer model, i.e., mass transfer coefficient kfa and diffusion coefficient (Deff) determination, defined intra-particle diffusion as the dominating rate controlling step. Kinetic activation parameters, derived from pseudo-second-order rate constants, showed low dependence on adsorbent geometry/morphology and porosity, while the diffusivity of the pores was significant to removal efficacy. The results of competitive arsenic adsorption in a multi-component system of phosphate, chromate, or silicate showed effective arsenic removal using T–Cu adsorbents. The high adsorption rate—pseudo-second-order constants in the range 0.509–0.789 g mg−1 min−1 for As(V) and 0.304–0.532 g mg1 min1 for As(III)—justified further application T–Cu(A–C) in a flow system. The fixed-bed column adsorption data was fitted using empirical Bohart–Adams, Yoon–Nelson, Thomas, and dose–response models to indicate capacities and breakthrough time dependence on arsenic influent concentration and the flow rate. Pore surface diffusion modeling (PSDM), following bed-column testing, further determined adsorbent capacities and mass transport under applied hydraulic loading rates.

Keywords

Arsenite Arsenate Copper Column study Adsorption Modeling 

Notes

Funding information

The authors acknowledge receiving financial support from the Ministry of Education, Science and Technological Developments of the Republic of Serbia, Project No. III45019, III43009, OI172057, and University of Defense, Republic of Serbia, project VA-TT/4/16-18.

Supplementary material

11356_2019_5547_MOESM1_ESM.docx (420 kb)
ESM 1 (DOCX 420 kb)

References

  1. Agency EP (2005) Treatment technologies for arsenic removal. Washington DCGoogle Scholar
  2. Alberti G, Amendola V, Pesavento M, Biesuz R (2012) Beyond the synthesis of novel solid phases: review on modelling of sorption phenomena. Coord Chem Rev 256:28–45.  https://doi.org/10.1016/j.ccr.2011.08.022 CrossRefGoogle Scholar
  3. Arrhenius S (1889) Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z Phys Chem 4.  https://doi.org/10.1515/zpch-1889-0108
  4. Athanasaki G, Sherrill L, Hristovski KD (2015) The pore surface diffusion model as a tool for rapid screening of novel nanomaterial-enhanced hybrid ion-exchange media. Environ Sci Water Res Technol 1:448–456.  https://doi.org/10.1039/C5EW00108K CrossRefGoogle Scholar
  5. Awual MR, El-Safty SA, Jyo A (2011) Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent. J Environ Sci 23:1947–1954.  https://doi.org/10.1016/S1001-0742(10)60645-6 CrossRefGoogle Scholar
  6. Baig SA, Sheng T, Hu Y, Xu J, Xu X (2015) Arsenic removal from natural water using low cost granulated adsorbents: a review. CLEAN - Soil, Air, Water 43:13–26.  https://doi.org/10.1002/clen.201200466 CrossRefGoogle Scholar
  7. Bajić ZJ, Veličković ZS, Djokić VR, Perić-Grujić AA, Ersen O, Uskoković PS, Marinković AD (2016) Adsorption study of arsenic removal by novel hybrid copper impregnated tufa adsorbents in a batch system. CLEAN - Soil, Air, Water 44:1477–1488.  https://doi.org/10.1002/clen.201500765 CrossRefGoogle Scholar
  8. Bhattacharya P, Mukherjee AB, Loeppert R, Bundschuh J, Zevenhoven R (2007) Arsenic in soil and groundwater environment, volume 9, 1st edn. Elsevier Inc, New YorkGoogle Scholar
  9. Bohart GS, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc 42:523–544.  https://doi.org/10.1021/ja01448a018 CrossRefGoogle Scholar
  10. Bordoloi S, Nath SK, Gogoi S, Dutta RK (2013) Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies. J Hazard Mater 260:618–626.  https://doi.org/10.1016/j.jhazmat.2013.06.017 CrossRefGoogle Scholar
  11. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics 1. J Am Chem Soc 69:2836–2848.  https://doi.org/10.1021/ja01203a066 CrossRefGoogle Scholar
  12. Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (2008) Natural arsenic in Groundwaters of Latin America. CRC Press, Taylor & Francis Group, LondonCrossRefGoogle Scholar
  13. Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166.  https://doi.org/10.1016/j.desal.2007.01.015 CrossRefGoogle Scholar
  14. Clark RM (1987) Evaluating the cost and performance of field-scale granular activated carbon systems. Environ Sci Technol 21:573–580.  https://doi.org/10.1021/es00160a008 CrossRefGoogle Scholar
  15. Crittenden J, Weber W (1978) Predictive model for design of fixed-bed adsorbers: single-component model verification. J Environ Eng Div 104:433–443Google Scholar
  16. Crittenden JC, Hutzler NJ, Geyer DG, Oravitz JL, Friedman G (1986) Transport of organic compounds with saturated groundwater flow: model development and parameter sensitivity. Water Resour Res 22:271–284.  https://doi.org/10.1029/WR022i003p00271 CrossRefGoogle Scholar
  17. Dünwald H, Wagner C (1934) Methodik der Messung von Diffusiongeschwindigkeiten bei Losungsvorgangen von Gasen in festen Phasen (Measurement of Diffusion Rate in the Process of Dissolving Gases in Solid Phases). Z Phys Chem B 24:53–58Google Scholar
  18. Escudero C, Fiol N, Villaescusa I, Bollinger J-C (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541.  https://doi.org/10.1016/j.jhazmat.2008.08.042 CrossRefGoogle Scholar
  19. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10.  https://doi.org/10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  20. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205.  https://doi.org/10.1016/j.jhazmat.2013.12.062 CrossRefGoogle Scholar
  21. Geckeler KE, Nishide H (eds) (2009) Advanced nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/9783527628940 CrossRefGoogle Scholar
  22. Geng G, Myers RJ, Qomi MJA, Monteiro PJM (2017) Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci Rep 7:10986.  https://doi.org/10.1038/s41598-017-11146-8 CrossRefGoogle Scholar
  23. Gholami MM, Mokhtari MA, Aameri A, Alizadeh Fard MR (2006) Application of reverse osmosis technology for arsenic removal from drinking water. Desalination 200:725–727.  https://doi.org/10.1016/j.desal.2006.03.504 CrossRefGoogle Scholar
  24. Glasston S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New YorkGoogle Scholar
  25. Gorobinskii LV, Efimova NN, Fattakhova ZT, Korchak VN (2005) Preparation of CaO-CaCO3 pillared clay. Inorg Mater 41:203–205.  https://doi.org/10.1007/s10789-005-0045-9 CrossRefGoogle Scholar
  26. Goswami A, Raul PK, Purkait MK (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90:1387–1396.  https://doi.org/10.1016/j.cherd.2011.12.006 CrossRefGoogle Scholar
  27. Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC (1997) Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31:321–326.  https://doi.org/10.1021/es950654l CrossRefGoogle Scholar
  28. Habuda-Stanić M, Kuleš M, Kalajdžić B, Romić Ž (2007) Quality of groundwater in eastern Croatia. The problem of arsenic pollution. Desalination 210:157–162.  https://doi.org/10.1016/j.desal.2006.05.040 CrossRefGoogle Scholar
  29. Hand DW, Crittenden JC, Hokanson DR, Bulloch JL (1997) Predicting the performance of fixed-bed granular activated carbon adsorbers. Water Sci Technol 35.  https://doi.org/10.1016/S0273-1223(97)00136-4
  30. Haring MM (1942) The theory of rate processes (Glasstone, Samuel; Laidler, Keith J.; Eyring, Henry). J Chem Educ 19:249.  https://doi.org/10.1021/ed019p249.1 CrossRefGoogle Scholar
  31. Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689.  https://doi.org/10.1016/j.jhazmat.2005.12.043 CrossRefGoogle Scholar
  32. Hristovski KD, Westerhoff PK, Crittenden JC, Olson LW (2008) Arsenate removal by nanostructured ZrO 2 spheres. Environ Sci Technol 42:3786–3790.  https://doi.org/10.1021/es702952p CrossRefGoogle Scholar
  33. Hristovski K, Westerhoff P, Crittenden J (2008a) An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers. J Hazard Mater 156:604–611.  https://doi.org/10.1016/j.jhazmat.2007.12.073 CrossRefGoogle Scholar
  34. Inglezakis VJ, Zorpas AA (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat 39:149–157.  https://doi.org/10.1080/19443994.2012.669169 CrossRefGoogle Scholar
  35. International Committee on Natural Zeolites (2000) Natural zeolites for the third millenium. A. De Frede, NapoliGoogle Scholar
  36. Jia Y, Wang R, Fane A (2005) Atrazine adsorption from aqueous solution using powdered activated carbon—improved mass transfer by air bubbling agitation. Chem Eng J.  https://doi.org/10.1016/j.cej.2005.10.014
  37. Kaygusuz H, Uzaşçı S, Erim FB (2015) Removal of fluoride from aqueous solution using aluminum alginate beads. CLEAN - Soil, Air, Water 43:724–730.  https://doi.org/10.1002/clen.201300632 CrossRefGoogle Scholar
  38. Lakshmanan D, Clifford D, Samanta G (2008) Arsenic removal by coagulation with aluminium, iron, titanium and zirconium. J Am Water Works Assoc 100:76–79CrossRefGoogle Scholar
  39. Lei J, Peng B, Liang Y-J, Min X-B, Chai L-Y, Ke Y, You Y (2018) Effects of anions on calcium arsenate crystalline structure and arsenic stability. Hydrometallurgy 177:123–131.  https://doi.org/10.1016/j.hydromet.2018.03.007 CrossRefGoogle Scholar
  40. Ma Z, Whitley RD, Wang N-HL (1996) Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems. AICHE J 42:1244–1262.  https://doi.org/10.1002/aic.690420507 CrossRefGoogle Scholar
  41. Magnuson ML, Speth TF (2005) Quantitative structure−property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon. Environ Sci Technol 39:7706–7711.  https://doi.org/10.1021/es0508018 CrossRefGoogle Scholar
  42. Malana MA, Qureshi RB, Ashiq MN (2011) Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetics and mechanism. Chem Eng J 172:721–727.  https://doi.org/10.1016/j.cej.2011.06.041 CrossRefGoogle Scholar
  43. Maliyekkal SM, Philip L, Pradeep T (2009) As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chem Eng J 153:101–107.  https://doi.org/10.1016/j.cej.2009.06.026 CrossRefGoogle Scholar
  44. Markovski JS, Marković DD, Dokić VR, Mitrić M, Ristić MD, Onjia AE, Marinković AD (2014) Arsenate adsorption on waste eggshell modified by goethite, α-MnO2 and goethite/α-MnO2. Chem Eng J 237:430–442.  https://doi.org/10.1016/j.cej.2013.10.031 CrossRefGoogle Scholar
  45. Martinson CA, Reddy KJ (2009) Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411.  https://doi.org/10.1016/j.jcis.2009.04.075 CrossRefGoogle Scholar
  46. Mertz KA, Gobin F, Hand DW, Hokanson DR, Crittenden JC (1999) Manual: adsorption design software for windows (Ad-DesignS)Google Scholar
  47. Miller GP, Norman DI, Frisch PL (2000) A comment on arsenic species separation using ion exchange. Water Res 34:1397–1400.  https://doi.org/10.1016/S0043-1354(99)00257-2 CrossRefGoogle Scholar
  48. Milonjić SK, Čerović LS, Čokeša DM, Zec S (2007) The influence of cationic impurities in silica on its crystallization and point of zero charge. J Colloid Interface Sci 309:155–159.  https://doi.org/10.1016/j.jcis.2006.12.033 CrossRefGoogle Scholar
  49. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53.  https://doi.org/10.1016/j.jhazmat.2007.01.006 CrossRefGoogle Scholar
  50. Mohora E, Rončević S, Dalmacija B, Agbaba J, Watson M, Karlović E, Dalmacija M (2012) Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. J Hazard Mater 235–236:257–264.  https://doi.org/10.1016/j.jhazmat.2012.07.056 CrossRefGoogle Scholar
  51. Morrison GMP, Bately GE, Florence TM (1989) Metal speciation and toxicity. Chem Br 25:791–795Google Scholar
  52. Myneni SCB, Traina SJ, Waychunas GA, Logan TJ (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim Cosmochim Acta 62:3499–3514.  https://doi.org/10.1016/S0016-7037(98)00221-X CrossRefGoogle Scholar
  53. Najm IN, Snoeyink VL, Galvin TL (1991) Control of Organic Compounds with Powdered Activated Carbon. AWWA Research/Association, DenverGoogle Scholar
  54. Pal P, Ahammad SZ, Pattanayak A, Bhattacharya P (2007) Removal of arsenic from drinking water by chemical precipitation – a modeling and simulation study of the physical-chemical processes. Water Environ Res 79:357–366.  https://doi.org/10.2175/106143006X111754 CrossRefGoogle Scholar
  55. Pillewan P, Mukherjee S, Roychowdhury T, Das S, Bansiwal A, Rayalu S (2011) Removal of as(III) and as(V) from water by copper oxide incorporated mesoporous alumina. J Hazard Mater 186:367–375.  https://doi.org/10.1016/j.jhazmat.2010.11.008 CrossRefGoogle Scholar
  56. Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish.’. J Hazard Mater 166:1050–1059.  https://doi.org/10.1016/j.jhazmat.2008.12.013 CrossRefGoogle Scholar
  57. Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102.  https://doi.org/10.1016/j.jcis.2013.01.041 CrossRefGoogle Scholar
  58. Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75:589–597.  https://doi.org/10.1021/ja01099a022 CrossRefGoogle Scholar
  59. Röhricht M, Krisam J, Weise U, Kraus UR, Düring R-A (2009) Elimination of carbamazepine, diclofenac and naproxen from treated wastewater by nanofiltration. CLEAN - Soil, Air, Water 37:638–641.  https://doi.org/10.1002/clen.200900040 CrossRefGoogle Scholar
  60. Sahiner N, Demirci S, Sahiner M, Yilmaz S, Al-Lohedan H (2015) The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J Environ Manag 152:66–74.  https://doi.org/10.1016/j.jenvman.2015.01.023 CrossRefGoogle Scholar
  61. Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53.  https://doi.org/10.1016/j.apcatb.2011.05.003 CrossRefGoogle Scholar
  62. Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2007) Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React Funct Polym 67:1599–1611.  https://doi.org/10.1016/j.reactfunctpolym.2007.07.047 CrossRefGoogle Scholar
  63. Shih M-C (2005) An overview of arsenic removal by pressure-drivenmembrane processes. Desalination 172:85–97.  https://doi.org/10.1016/j.desal.2004.07.031 CrossRefGoogle Scholar
  64. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619.  https://doi.org/10.1351/pac198557040603 CrossRefGoogle Scholar
  65. Skelland AHP (1974) Diffusional mass transfer. Wiley, New YorkGoogle Scholar
  66. Šljivić Ivanović M, Smičiklas I, Pejanović S (2013) Analysis and comparison of mass transfer phenomena related to Cu2+ sorption by hydroxyapatite and zeolite. Chem Eng J 223:833–843.  https://doi.org/10.1016/j.cej.2013.03.034 CrossRefGoogle Scholar
  67. Song J, Zou W, Bian Y, Su F, Han R (2011) Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265:119–125.  https://doi.org/10.1016/j.desal.2010.07.041 CrossRefGoogle Scholar
  68. Sontheimer H, Crittenden J, Summers S (1988) Activated carbon for water treatment. DVGW-Forschungsstelle, Engler-Bunte Institut, KarlsruheGoogle Scholar
  69. Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666.  https://doi.org/10.1021/ja01238a017 CrossRefGoogle Scholar
  70. Vaiano V, Iervolino G, Sannino D, Rizzo L, Sarno G, Farina A (2014) Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2. Appl Catal B Environ 160–161:247–253.  https://doi.org/10.1016/j.apcatb.2014.05.034 CrossRefGoogle Scholar
  71. Veličković Z, Vuković GD, Marinković AD, Moldovan M-S, Perić-Grujić AA, Uskoković PS, Ristić MĐ (2012) Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181–182:174–181.  https://doi.org/10.1016/j.cej.2011.11.052 CrossRefGoogle Scholar
  72. Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of as(III) and as(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131.  https://doi.org/10.1016/j.jhazmat.2014.01.009 CrossRefGoogle Scholar
  73. Weber WI, Sontheimer H, Crittenden JC, Summers S (1988) Activated carbon for water treatment, 2nd edn. DVGW-Forschungsstelle, Engler-Bunte Institut, Universitat Karlsruhe, KarlsruheGoogle Scholar
  74. Xu P, Capito M, Cath TY (2013) Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. J Hazard Mater 260:885–891.  https://doi.org/10.1016/j.jhazmat.2013.06.038 CrossRefGoogle Scholar
  75. Yadanaparthi SKR, Graybill D, von Wandruszka R (2009) Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J Hazard Mater 171:1–15.  https://doi.org/10.1016/j.jhazmat.2009.05.103 CrossRefGoogle Scholar
  76. Yan G, Viraraghavan T, Chen M (2001) A new model for heavy metal removal in a biosorption column. Adsorpt Sci Technol 19:25–43.  https://doi.org/10.1260/0263617011493953 CrossRefGoogle Scholar
  77. Yan D, Gang DD, Zhang N, Lin L (2013) Adsorptive selenite removal using iron-coated GAC: modeling selenite breakthrough with the pore surface diffusion model. J Environ Eng 139:213–219.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000633 CrossRefGoogle Scholar
  78. Yoon YH, Nelson JH (1984) Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J 45:509–516.  https://doi.org/10.1080/15298668491400197 CrossRefGoogle Scholar
  79. Zhang G, Liu H, Liu R, Qu J (2009) Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J Hazard Mater 168:820–825.  https://doi.org/10.1016/j.jhazmat.2009.02.137 CrossRefGoogle Scholar
  80. Zhang Y, Zhou Y, Peng C, Shi J, Wang Q, He L, Shi L (2018) Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: critical roles of cerium incorporation. Appl Surf Sci 436:981–988.  https://doi.org/10.1016/j.apsusc.2017.12.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Military AcademyBelgradeSerbia
  3. 3.Military Technical InstituteBelgradeSerbia
  4. 4.Innovation Centre of the Faculty of Technology and Metallurgy in Belgrade dooBelgradeSerbia

Personalised recommendations