Microplastics and nanoplastics: would they affect global biodiversity change?

  • Duofei Hu
  • Maocai Shen
  • Yaxin ZhangEmail author
  • Hongjuan Li
  • Guangming Zeng
Short Research and Discussion Article


Micro(nano)plastics, new emerging contaminants, are ubiquitously found in the environment due to continuous release and accumulation. Widespread micro(nano)plastics can increase their exposure to organisms, pose threats to the ecological environment and human health, and potentially result in global biodiversity changes. Research has been started on micro(nano)plastics regarding their environmental distribution, contamination sources, and methods and technologies for analysis, as well as the environmental impacts and ecological effects on organisms ingesting micro(nano)plastics. However, limited information focused on the consequences of global biodiversity has been reported and the research approaches on biodiversity change caused by micro(nano)plastics are still seldom developed. Recently, researchers in environmental and ecological groups have begun to be conscious of the relationship between micro(nano)plastics and biodiversity. Even so, more efforts are needed to assess the impacts of micro(nano)plastics on this subject, as well as the interactions between organisms and micro(nano)plastics.


Biodiversity change Microplastics Nanoplastics Microbial community Environmental concerns 



  1. Anderson PJ, Warrack S, Langen V, Challis JK, Hanson ML, Rennie MD (2017) Microplastic contamination in Lake Winnipeg, Canada. Environ Pollut 225:223–231CrossRefGoogle Scholar
  2. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605CrossRefGoogle Scholar
  3. Bandopadhyay S, Martinclosas L, Pelacho AM, Debruyn JM (2018) Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front Microbiol 9:819CrossRefGoogle Scholar
  4. Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364:1985–1998CrossRefGoogle Scholar
  5. Bhattacharjee S, Ershov D, Islam MA, Kämpfer AM, Maslowska KA, van der Gucht J, Alink GM, Marcelis ATM, Zuilhof H, Rietjens IMCM (2014) Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv 4:19321–19330CrossRefGoogle Scholar
  6. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561CrossRefGoogle Scholar
  7. Carson HS, Colbert SL, Kaylor MJ, Mcdermid KJ (2011) Small plastic debris changes water movement and heat transfer through beach sediments. Mar Pollut Bull 62:1708–1713CrossRefGoogle Scholar
  8. Cauwenberghe LV, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70CrossRefGoogle Scholar
  9. Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687CrossRefGoogle Scholar
  10. Department for Environment FRA (2016) Banning the use of microbeads in cosmetics and personal care products
  11. Department for Environment FRA (2018) Single use plastic: banning the distribution and/or sale of plastic straws, stirrers and plastic-stemmed cotton buds in England
  12. Diepens NJ, Koelmans AA (2018) Accumulation of plastic debris and associated contaminants in aquatic food webs. Environ Sci Technol 52:8510–8520. CrossRefGoogle Scholar
  13. Eckert EM, Di AC, Kettner MT, Ariasandres M, Fontaneto D, Grossart HP, Corno G (2017) Microplastics increase impact of treated wastewater on freshwater microbial community. Environ Pollut 234:495CrossRefGoogle Scholar
  14. Eser U (2010) What is biodiversity? Austral Ecol 34:598–599Google Scholar
  15. Espinosa C, Cuesta A, Esteban MÁ (2017) Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 68:251–259Google Scholar
  16. Fu SF, Ding JN, Zhang Y, Li YF, Zhu R, Yuan XZ, Zou H (2018) Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci Total Environ 625:64–70CrossRefGoogle Scholar
  17. Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, Langlois V, Kelly FJ, Tassin B (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5CrossRefGoogle Scholar
  18. Germanov ES, Marshall AD, Bejder L, Fossi MC, Loneragan NR (2018) Microplastics: no small problem for filter-feeding megafauna. Trends Ecol Evol 33:227–232. CrossRefGoogle Scholar
  19. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRefGoogle Scholar
  20. Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8:817–820CrossRefGoogle Scholar
  21. Hartmann NB, Rist S, Bodin J, Jensen LHS, Schmidt SN, Mayer P, Meibom A, Baun A (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13:488–493CrossRefGoogle Scholar
  22. Hernandez-Gonzalez A, Saavedra C, Gago J, Covelo P, Santos MB (2017) Analysis and quantification of microplastics in the stomachs of common dolphin (Delphinus delphis) stranded on the Galician coasts (NW Spain). In Fate & Impact of Microplastics in Marine Ecosystems. Elsevier, Amsterdam, pp 123–124Google Scholar
  23. Holland ER, Mallory ML, Shutler D (2016) Plastics and other anthropogenic debris in freshwater birds from Canada. Sci Total Environ 571:251–258CrossRefGoogle Scholar
  24. Hu D, Shen M, Zhang Y, Zeng G (2019) Micro(nano)plastics: an un-ignorable carbon source? Sci Total Environ 657:108–110CrossRefGoogle Scholar
  25. Huerta LE et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50:2685–2691CrossRefGoogle Scholar
  26. Iguchi T, Watanabe H, Katsu Y (2006) Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect 114(Suppl 1):101–105CrossRefGoogle Scholar
  27. Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702CrossRefGoogle Scholar
  28. Keswani A, Oliver DM, Gutierrez T, Quilliam RS (2016) Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res 118:10–19CrossRefGoogle Scholar
  29. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment. Critical review and model-supported re-interpretation of empirical studies. Environ Sci Technol 50:3315–3326CrossRefGoogle Scholar
  30. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145CrossRefGoogle Scholar
  31. Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, Li D, Shi H (2016) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184CrossRefGoogle Scholar
  32. Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY (2018) Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85CrossRefGoogle Scholar
  33. Liu H, Yang X, Liu G, Liang C, Xue S, Chen H, Ritsema CJ, Geissen V (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917CrossRefGoogle Scholar
  34. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016a) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060CrossRefGoogle Scholar
  35. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016b) Response to comment on “uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver”. Environ Sci Technol 50:12523CrossRefGoogle Scholar
  36. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270CrossRefGoogle Scholar
  37. Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173CrossRefGoogle Scholar
  38. Mcdevitt JP, Criddle CS, Morse M, Hale RC, Bott CB, Rochman CM (2017) Addressing the issue of microplastics in the wake of the microbead-free waters act-a new standard can facilitate improved policy. Environ Sci Technol 51:6611–6617CrossRefGoogle Scholar
  39. Ministry for the Environment (2018) Phasing out single-use plastic shopping bags
  40. Munari C, Infantini V, Scoponi M, Rastelli E, Corinaldesi C, Mistri M (2017) Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 122:161–165CrossRefGoogle Scholar
  41. Nolte TM, Hartmann NB, Kleijn JM, Garnæs J, Van dMD, Jan HA, Baun A (2017) The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat Toxicol 183:11–20CrossRefGoogle Scholar
  42. Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM (2015) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492CrossRefGoogle Scholar
  43. Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, Bacsik Z, Gorokhova E (2018) Evidence for selective bacterial community structuring on microplastics. Environ Microbiol 20:2796–2808Google Scholar
  44. Oßmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316CrossRefGoogle Scholar
  45. Porter A, Lyons BP, Galloway TS, Lewis C (2018) Role of marine snows in microplastic fate and bioavailability. Environ Sci Technol 52:7111–7119CrossRefGoogle Scholar
  46. Provencher JF, Gaston AJ, Mallory ML, O’hara PD, Gilchrist HG (2010) Ingested plastic in a diving seabird, the thick-billed murre (Uria lomvia), in the eastern Canadian Arctic. Mar Pollut Bull 60:1406–1411CrossRefGoogle Scholar
  47. Rebolledo ELB, Franeker JAV, Jansen OE, Brasseur SMJM (2013) Plastic ingestion by harbour seals ( Phoca vitulina ) in the Netherlands. Mar Pollut Bull 67:200–202CrossRefGoogle Scholar
  48. Redondo-Hasselerharm PE, Falahudin D, Ethm P, Koelmans AA (2018) Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ Sci Technol 52:2278–2286Google Scholar
  49. Reynolds C, Ryan PG (2018) Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar Pollut Bull 126:330–333CrossRefGoogle Scholar
  50. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661CrossRefGoogle Scholar
  51. Rossi G, Barnoud J, Monticelli L (2014) Polystyrene nanoparticles perturb lipid membranes. J Phys Chem Lett 5:241–246CrossRefGoogle Scholar
  52. Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83CrossRefGoogle Scholar
  53. Shen M, Zhu Y, Zhang Y, Zeng G, Wen X, Yi H, Ye S, Ren X, Song B (2019) Micro(nano)plastics: unignorable vectors for organisms. Mar Pollut Bull 139:328–331CrossRefGoogle Scholar
  54. Song YK, Hong SH, Mi J, Han GM, Jung SW, Shim WJ (2018) Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ Sci Technol 51:4368–4376CrossRefGoogle Scholar
  55. Steer M, Cole M, Thompson RC, Lindeque PK (2017) Microplastic ingestion in fish larvae in the western English Channel. Environ Pollut 226:250–259CrossRefGoogle Scholar
  56. Su L, Xue Y, Li L, Yang D, Kolandhasamy P, Li D, Shi H (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719CrossRefGoogle Scholar
  57. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113:2430–2435CrossRefGoogle Scholar
  58. UN Environment (2018) Beat plastic pollution
  59. Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li FM (2016) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric For Meteorol 228-229:42–51CrossRefGoogle Scholar
  60. Wang J, Wang MX, Ru SG, Liu XS (2019) High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Sci Total Environ 651:1661–1669. CrossRefGoogle Scholar
  61. Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497CrossRefGoogle Scholar
  62. Wu WM, Yang J, Criddle CS (2017) Microplastics pollution and reduction strategies. Front Environ Sci Eng 11:6CrossRefGoogle Scholar
  63. Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20CrossRefGoogle Scholar
  64. Zhao J et al (2018) Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci Total Environ 640(641):637–645CrossRefGoogle Scholar
  65. Ziajahromi S, Neale PA, Rintoul L, Leusch FD (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringHunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of EducationChangshaPeople’s Republic of China

Personalised recommendations