Skip to main content

Advertisement

Log in

Maternal exposure to perfluorooctanoic acid (PFOA) causes liver toxicity through PPAR-α pathway and lowered histone acetylation in female offspring mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study was conducted to investigate the liver toxicity in female offspring mice induced by maternal exposure to perfluorooctanoic acid (PFOA). Fifty pregnant Kunming mice were randomly divided into 5 groups with 10 of each, which were treated with 0.2 mL PFOA solution dissolved with deionized water at 0, 1, 2.5, 5, and 10 mg/kg BW, respectively, from the pregnancy day (PND) 0 to day 17. Female offspring mice were sacrificed to collect serum and liver at postpartum day 21. The results showed that PFOA significantly reduced the body weight at weaning and the survival rate of the female offspring mice (P < 0.01) increased the liver index of the pups (P < 0.01). Meanwhile, PFOA also caused hepatic bleeding, local necrosis, and enlargement of hepatocytes and vacuolization. The levels of serum AST, ALT, SOD, and CAT in PFOA treatment group were upregulated significantly (P < 0.01). The expressions of Acot1, Acox1, and Acsl1 genes were increased significantly (P < 0.01). The expression of PPAR-α gene was decreased significantly (P < 0.01). There was no significant difference in the expression of Cpt1a gene among the 5 groups. HAT activity was reduced significantly and HDAC activity was increased significantly. The expression of anti-acetyl-histone H3 and acetyl-histone H4 was reduced significantly. Thus, our findings indicate that exposure to PFOA during pregnancy affects the growth and development of the pups and causes liver damage, disrupting the secretion of enzymes involved in fatty acid oxidation induced by PPAR-α, leading to liver oxidative stress and a decrease in the degree of histone acetylation. Elevated HDAC may aggravate downstream fatty acid metabolism disorders through PPAR-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott BD, Wood CR, Watkins AM, Tatum-Gibbs K, Das KP, Lau C (2012) Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod Toxicol 33(4):491–505

    Article  CAS  Google Scholar 

  • Azhar M, Schultz JEJ, Grupp I, Dorn GW 2nd, Meneton P, Molin DG, Gittenberger-de Groot AC, Doetschman T (2003) Transforming growth factor beta, in cardiovascular development and function. Cytokine Growth Factor Rev 14(5):391–407

    Article  CAS  Google Scholar 

  • Berthiaume M, Boufaied N, Moisan A, Gaudreau L (2006) High levels of oxidative stress globally inhibit gene transcription and histone acetylation. DNA Cell Biol 25(2):124–134

    Article  CAS  Google Scholar 

  • Buhrke T, Krüger E, Pevny S, Rößler M, Bitter K, Lampen A (2015) Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology 333:53–62

    Article  CAS  Google Scholar 

  • Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, Li YY, Xu SQ (2012) Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol 33(4):538–545

    Article  CAS  Google Scholar 

  • Cui Q, Pan Y, Zhang H, Sheng N, Dai J (2018) Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environ Pollut 241:684–691

    Article  CAS  Google Scholar 

  • Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, Corton JC, Abbott BD (2017) Perfluoroalkyl acids-induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology 378:37–52

    Article  CAS  Google Scholar 

  • Dekker FJ, Bosch TVD, Martin NI (2014) Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 19(5):654–660

    Article  CAS  Google Scholar 

  • Ellis JM, Li LO, Wu PC (2010) Adipose Acyl-CoA Synthetase-1 Directs fatty acids toward β-oxidation and is required for cold thermogenesis. Cell Metab 12(1):53–64

    Article  CAS  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691

    Article  CAS  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Article  CAS  Google Scholar 

  • Hideshima T, Anderson KC (2013) Histone deacetylase inhibitors in the treatment for multiple myeloma. Int J Hematol 97(3):324–332

    Article  CAS  Google Scholar 

  • Huang Q, Zhang J, Martin FL (2013) Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study. Toxicol Lett 223(2):211–220

    Article  CAS  Google Scholar 

  • Hui Z, Li R, Chen L (2017) The impact of exposure to environmental contaminant on hepatocellular lipid metabolism. Gene 622:67–71

    Article  CAS  Google Scholar 

  • Keppler BR, Archer TK (2008a) Chromatin-modifying enzymes as therapeutic targets--Part 1. Expert Opin Ther Targets 12(10):1301–1312

    Article  CAS  Google Scholar 

  • Keppler BR, Archer TK (2008b) Chromatin-modifying enzymes as therapeutic targets--Part 2. Expert Opin Ther Targets 12(11):1457–1467

    Article  Google Scholar 

  • Khan SA, Sathyanarayan A, Mashek MT, Ong KT, Wollaston-Hayden EE, Mashek DG (2015) ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling. Diabetes 64(2):418–426

    Article  CAS  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 90(2):510–518

    Article  CAS  Google Scholar 

  • Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ (2017a) Molecular mechanisms of PFOA-induced toxicity in animals and humans: implications for health risks. Environ Int 99:43–54

    Article  CAS  Google Scholar 

  • Li K, Sun J, Yang J, Roberts SM, Zhang X, Cui X, Wei S, Ma LQ (2017b) Molecular mechanisms of perfluorooctanoate-induced hepatocyte apoptosis in mice using proteomic techniques. Environ Sci Technol 51(19):11380–11389

    Article  CAS  Google Scholar 

  • Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45(19):7954–7961

    Article  CAS  Google Scholar 

  • Liu H, Wang J, Sheng N, Cui R, Pan Y (2017) Acot1 is a sensitive indicator for PPARα activation after perfluorooctanoic acid exposure in primary hepatocytes of Sprague-Dawley rats. Toxicol in Vitro 42:299–307

    Article  CAS  Google Scholar 

  • Macon MB, Villanueva LR, Tatum-Gibbs K (2011) Prenatal perfluorooctanoic acid exposure in CD-1 mice: low-dose developmental effects and internal dosimetry. Toxicol Sci 122(1):134–145

    Article  CAS  Google Scholar 

  • Mashek DG, Li LO, Coleman RA (2007) Long-chain acyl-CoA synthetases and fatty acid channeling. Futur Lipidol 2(4):465–476

    Article  CAS  Google Scholar 

  • Misra P, Viswakarma N, Reddy JK (2013) Peroxisome proliferator-activated receptor-α signaling in hepatocarcinogenesis. Subcell Biochem 69:77–99

    Article  CAS  Google Scholar 

  • Nakamura MT, Yudell BE, Loor JJ (2014) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53(1):124–144

    Article  CAS  Google Scholar 

  • Niu Y, Desmarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free Rad Biol Med 82:22–28

    Article  CAS  Google Scholar 

  • Okamoto M, Reddy JK, Oyasu R (1997) Tumorigenic conversion of a non-tumorigenic rat urothelial cell line by overexpression of H2O2-generating peroxisomal fatty acyl-coa oxidase. Int J Cancer 70(6):716–721

    Article  CAS  Google Scholar 

  • Olson D, Sleiman S, Bourassa M, Wagner FF, Gale JP, Zhang YL, Ratan RR, Holson EB (2015) Hydroxamate-based histone deacetylase inhibitors can protect neurons from oxidative stress via a histone deacetylase-independent catalase-like mechanism. Chem Biol 22(4):439–445

    Article  CAS  Google Scholar 

  • Peng S, Yan L, Zhang J, Wang Z, Tian M, Shen H (2013) An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid. J Pharm Biomed Anal 86(4):56–64

    Article  CAS  Google Scholar 

  • Pyper SR, Navin V, Yu S, Reddy JK (2010) PPARα: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 8:e002

    Article  CAS  Google Scholar 

  • Quist EM, Filgo AJ, Cummings CA, Kissling GE, Hoenerhoff MJ, Fenton SE (2015) Hepatic mitochondrial alteration in CD-1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA). Toxicol Pathol 43(4):546–557

    Article  CAS  Google Scholar 

  • Rakhshandehroo M, Hooiveld G, Muller M, Kersten S (2009) Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. Plos One 4(8):e6796

    Article  CAS  Google Scholar 

  • Rakhshandehroo M, Knoch B, Muller M, Kersten S (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Research 2010:1–20. https://doi.org/10.1155/2010/612089

    Article  CAS  Google Scholar 

  • Ricciardi MR, Mirabilii S, Allegretti M, Licchetta R, Calarco A, Torrisi MR, Foà R, Nicolai R, Peluso G, Tafuri A (2015) Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood 126(16):1925–1929

    Article  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  Google Scholar 

  • Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339(6116):211–214

    Article  CAS  Google Scholar 

  • Spiegel S, Milstien S, Grant S (2012) Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 31(5):537–551

    Article  CAS  Google Scholar 

  • Tsuda S (2016) Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). J Toxicol Sci 41(Special):SP27–SP36

    Article  Google Scholar 

  • Wang L, Wang Y, Liang Y et al (2014) PFOS induced lipid metabolism disturbances in balb/c mice through inhibition of low density lipoproteins excretion. Sci Rep 4(1):4582

    Article  CAS  Google Scholar 

  • Wang QW, Yang GP, Zhang ZM, Zhang J (2018) Optimization of sample preparation and chromatography for the determination of perfluoroalkyl acids in sediments from the Yangtze Estuary and East China Sea. Chemosphere 205:524–530

    Article  CAS  Google Scholar 

  • White SS, Calafat AM, Kuklenyik Z, Villanueva L, Zehr RD, Helfant L, Strynar MJ, Lindstrom AB, Thibodeaux JR, Wood C, Fenton SE (2007) Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicol Sci 96(1):133–144

    Article  CAS  Google Scholar 

  • Wolf CJ, Fenton SE, Schmid JE, Calafat AM, Kuklenyik Z, Bryant XA, Thibodeaux J, Das KP, White SS, Lau CS, Abbott BD (2007) Developmental toxicity of perfluorooctanoic acid in the CD-1 mouse after cross-foster and restricted gestational exposures. Toxicol Sci 95(2):462–473

    Article  CAS  Google Scholar 

  • Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clinica Chimica Acta 339(2):1–9

    Article  CAS  Google Scholar 

  • Wu X, Xie G, Xu X, Wu W, Yang B (2018) Adverse bioeffect of perfluorooctanoic acid on liver metabolic function in mice. Environ Sci Pollut Res 25(5):4787–4793

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 31502111) and the Natural Science Foundation of Hebei (No C2016204097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, L., Zhang, Y. et al. Maternal exposure to perfluorooctanoic acid (PFOA) causes liver toxicity through PPAR-α pathway and lowered histone acetylation in female offspring mice. Environ Sci Pollut Res 26, 18866–18875 (2019). https://doi.org/10.1007/s11356-019-05258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05258-z

Keywords

Navigation